1. Srivastava, A., H. Gupta, A. K. Dwivedi, K. K. V. Penmatsa, P. Ranjan, and A. Sharma, "Aperture coupled dielectric resonator antenna optimisation using machine learning techniques," AEU --- International Journal of Electronics and Communications, Vol. 154, 154302, 2022, ISSN 1434-8411.
doi:10.1016/j.aeue.2022.154302 Google Scholar
2. Singh, O., M. R. Bharamagoudra, H. Gupta, et al. "Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms," Sādhanā, Vol. 47, 226, 2022.
doi:10.1007/s12046-022-01989-x Google Scholar
3. Ashish, P. U. and S. H. Gupta, "Optimization of ultra-wide band antenna by selection of substrate material using artificial neural network," Appl. Phys. A, Vol. 128, 192, 2022.
doi:10.1007/s00339-022-05312-7 Google Scholar
4. Nan, J., H. Xie, M. Gao, Y. Song, and W. Yang, "Design of UWB antenna based on improved deep belief network and extreme learning machine surrogate models," IEEE Access, Vol. 9, 126541-126549, 2021.
doi:10.1109/ACCESS.2021.3111902 Google Scholar
5. Gao, J., Y. Tian, X. Zheng, and X. Chen, "Resonant frequency modeling of microwave antennas using Gaussian process based on semi supervised learning,", 2020. Google Scholar
6. Sharma, K. and G. P. Pandey, "Efficient modelling of compact microstrip antenna using machine learning," AEU --- International Journal of Electronics and Communications, Vol. 135, 153739, 2021.
doi:10.1016/j.aeue.2021.153739 Google Scholar
7. Wu, Q., H. Wang, and W. Hong, "Multistage collaborative machine learning and its application to antenna modeling and optimization," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3397-3409, May 2020.
doi:10.1109/TAP.2019.2963570 Google Scholar
8. Wu, Z., Y. Yang, and Z. Yao, "Multi-parameter modeling with ANN for antenna design," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2381-2382, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608587 Google Scholar
9. Kayabasi, A., "MLP and KNN algorithm model applications for determining the operating frequency of A-shaped patch antennas," International Journal of Intelligent Systems and Applications in Engineering, Vol. 5, No. 3, 154-157, 2017.
doi:10.18201/ijisae.2017531432 Google Scholar
10. Abbasi Layegh, M., C. Ghobadi, and J. Nourinia, "The optimization design of a novel slotted microstrip patch antenna with multi-bands using adaptive network-based fuzzy inference system," Technologies, Vol. 5, 75, 2017.
doi:10.3390/technologies5040075 Google Scholar
11. Dhaliwal, B. S. and S. S. Pattnaik, "Development of PSO-ANN ensemble hybrid algorithm and its application in compact crown circular fractal patch antenna design," Wireless Pers Commun., Vol. 96, 135-152, 2017.
doi:10.1007/s11277-017-4157-8 Google Scholar
12. Kayabasi, A. and A. Akdagli, "Predicting the resonant frequency of E-shaped compact microstrip antennas by using anfis and SVM," Wireless Pers Commun., Vol. 82, 1893-1906, 2015.
doi:10.1007/s11277-015-2321-6 Google Scholar
13. Chen, Y., J. Zhu, Y. Xie, N. Feng, and Q. H. Liu, "Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network," Nanoscale, Vol. 11, No. 19, 9749-9755, 2019.
doi:10.1039/C9NR01315F Google Scholar
14. Jacobs, J. P., "Efficient resonant frequency modeling for dual-band microstrip antennas by Gaussian process regression," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 337-341, 2015.
doi:10.1109/LAWP.2014.2362937 Google Scholar
15. Jain, S. K., A. Patnaik, and S. N. Sinha, "Design of custom-made stacked patch antennas: A machine learning approach," Int. J. Mach. Learn. & Cyber., Vol. 4, 189-194, 2013.
doi:10.1007/s13042-012-0084-x Google Scholar
16. Akdagli, A., A. Toktas, A. Kayabasi, and I. Develi, "An application of artificial neural network to compute the resonant frequency of E-shaped compact microstrip antennas," Journal of Electrical Engineering, Vol. 64, No. 5, 317-322, 2013.
doi:10.2478/jee-2013-0046 Google Scholar
17. Nakmouche, M. F., A. M. Allam, D. E. Fawzy, and M. Abdalla, "Design and measurement of triple h-slotted DGS printed antenna with machine learning," Progress In Electromagnetics Research Letters, Vol. 101, 117-125, 2021.
doi:10.2528/PIERL21090501 Google Scholar
18. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Low-sidelobe-level series-fed microstrip antenna array of unequal interelement spacing," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1695-1698, 2017.
doi:10.1109/LAWP.2017.2666427 Google Scholar
19. Kaur, M. and J. S. Sivia, "Giuseppe peano and cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm," Int. J. RF Microwave Comput. Aided Eng., Vol. 30, No. 1, e22000, 2020.
doi:10.1002/mmce.22000 Google Scholar
20. Pujara, D., A. Modi, N. Pisharody, and J. Mehta, "Predicting the performance of pyramidal and corrugated horn antennas using ANFIS," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 293-296, 2014.
doi:10.1109/LAWP.2014.2305518 Google Scholar
21. Shi, L. P., Q. H. Zhang, S. H. Zhang, C. Yi, and G. X. Liu, "Efficient graphene reconfigurable reflectarray antenna electromagnetic response prediction using deep learning," IEEE Access, Vol. 9, 22671-22678, 2021.
doi:10.1109/ACCESS.2021.3054944 Google Scholar
22. Jagadeesh, V. K. and S. S. Kumar, "Design of normal mode helical antenna using neural networks," 2011 IEEE Applied Electromagnetics Conference, AEMC, 1-4, 2011. Google Scholar
23. Wan, G., M. Li, M. Zhang, L. Kang, and L. Xie, "A novel information fusion method of RFID strain sensor based on microstrip notch circuit," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-10, Art No. 8002610, 2022. Google Scholar
24. Kim, Y., S. Keely, J. Ghosh, and H. Ling, "Application of artificial neural networks to broadband antenna design based on a parametric frequency model," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 669-674, Mar. 2007.
doi:10.1109/TAP.2007.891564 Google Scholar
25. Hamrouni, C., A. Alutaybi, and S. Chaoui, "Various antenna structures performance analysis based fuzzy logic functions," International Journal of Advanced Computer Science and Applications, Vol. 13, No. 1, 2022.
doi:10.14569/IJACSA.2022.0130109 Google Scholar
26. Karnaushenko, D. D., D. Karnaushenko, D. Makarov, and O. G. Schmidt, "Compact helical antenna for smart implant applications," NPG Asia Materials, Vol. 7, No. 6, e188-e188, 2015.
doi:10.1038/am.2015.53 Google Scholar
27. Furnkranz, J., ``Decision tree," C. Sammut, G. I. Webb, eds., Encyclopedia of Machine Learning, Springer, 2011.
28. Prayudani, S., A. Hizriadi, Y. Y. Lase, et al. "Analysis accuracy of forecasting measurement technique on random K nearest neighbor, (RKNN) using MAPE and MSE," Proc. J. Phys., Conf., Vol. 1361, No. 1, Art. No. 012089, 2019. Google Scholar