1. Maslen, E. H. and G. Schweitzer, Magnetic Bearings, Vol. 53, No. 9, Springer Berlin Heidelberg, 2009.
doi:10.1007/978-3-642-00497-1
2. Bleuler, H., et al. Magnetic Bearings, Springer Berlin Heidelberg, 2009.
3. Tian, L., X. P. Ai, and Y. Q. Tian, "Analytical model of magnetic force for axial stack permanent magnet bearings," IEEE Trans. Magn., Vol. 48, No. 10, 2592-2599, 2012.
doi:10.1109/TMAG.2012.2197635 Google Scholar
4. Marth, E., G. Jungmayr, and W. Amrhein, "A 2-D-based analytical method for calculating permanent magnetic ring bearings with arbitrary magnetisation and its application to optimal bearing design," IEEE Trans. Magn., Vol. 50, No. 5, 1-8, 2014.
doi:10.1109/TMAG.2013.2295550 Google Scholar
5. Bekinal, S. I., M. Doddamani, and N. D. Dravid, "Utilization of low computational cost two dimensional analytical equations in optimization of multi rings permanent magnet thrust bearings," Progress In Electromagnetics Research M, Vol. 62, 51-63, 2017.
doi:10.2528/PIERM17072007 Google Scholar
6. Bekinal, S. I. and S. Jana, "Generalized three-dimensional mathematical models for force and stiffness in axially, radially, and perpendicularly magnetized passive magnetic bearings with `n' number of ring pairs," J. Tribol., Vol. 138, No. 3, 1-9, 2016.
doi:10.1115/1.4032668 Google Scholar
7. Sodano, H. A. and D. J. Inman, "Modelling of a new active eddy current vibration control system," J. Dyn. Syst. Meas. Control. Trans. ASME, Vol. 130, No. 2, 0210091-02100911, 2008.
doi:10.1115/1.2837436 Google Scholar
8. Supreeth, D. K., S. I. Bekinal, S. R. Chandranna, and M. Doddamani, "A review of superconducting magnetic bearings and their application," IEEE Trans. Appl. Supercond., Vol. 32, No. 3, 3800215, 2022.
doi:10.1109/TASC.2022.3156813 Google Scholar
9. Passenbrunner, J., G. Jungmayr, and W. Amrhein, "Design and analysis of a 1D actively stabilized system with viscoelastic damping support," Actuators, Vol. 8, No. 2, 1-18, 2019.
doi:10.3390/act8020033 Google Scholar
10. Deshwal, D., S. I. Bekinal, and M. Doddamani, "Analysis of novel eddy current damper for multi-ring permanent magnet thrust bearing," Progress In Electromagnetics Research M, Vol. 104, 13-22, 2021.
doi:10.2528/PIERM21070107 Google Scholar
11. Fang, Y. L., J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 9, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443 Google Scholar
12. Detoni, J. G., Q. Cui, N. Amati, and A. Tonoli, "Modelling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications," J. Sound Vib., Vol. 373, 52-65, 2016.
doi:10.1016/j.jsv.2016.03.013 Google Scholar
13. Sun, Y., S. Yin, Y. Yuan, Y. Huang, and F. Yang, "Multi-objective optimization design of magnetic bearing based on genetic particle swarm optimization," Progress In Electromagnetics Research M, Vol. 81, 181-192, 2019.
doi:10.2528/PIERM19031904 Google Scholar
14. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE Trans. Magn., Vol. 42, No. 8, 2038-2042, 2006.
doi:10.1109/TMAG.2005.861160 Google Scholar
15. Zeisberger, M., T. Habisreuther, D. Litzkendorf, O. Surzhenko, R. Muller, and W. Gawalek, "Optimization of levitation forces," IEEE Trans. Appiled Supercond., Vol. 11, No. 1, 1741-1744, Mar. 2001.
doi:10.1109/77.920120 Google Scholar
16. Sahinkaya, M. N. and A. E. Hartavi, "Variable bias current in magnetic bearings for energy optimization," IEEE Trans. Magn., Vol. 43, No. 3, 1052-1060, 2007.
doi:10.1109/TMAG.2006.888731 Google Scholar
17. Rao, J. S. and R. Tiwari, "Optimum design and analysis of axial hybrid magnetic bearings using multi-objective genetic algorithms," Int. J. Comput. Methods Eng. Sci. Mech., Vol. 13, No. 1, 10-27, 2012.
doi:10.1080/15502287.2011.636786 Google Scholar
18. Liu, X. and B. Han, "The multiobjective optimal design of a two-degree-of-freedom hybrid magnetic bearing," IEEE Trans. Magn., Vol. 50, No. 9, 2014.
doi:10.1109/TMAG.2014.2313315 Google Scholar
19. Bekinal, S. I., M. Doddamani, and S. Jana, "Optimization of axially magnetized stack structured permanent magnet thrust bearing using three-dimensional mathematical model," J. Tribol., Vol. 139, No. 3, 1-9, 2017.
doi:10.1115/1.4034533 Google Scholar
20. Bekinal, S. I., M. Doddamani, M. Vanarotti, and S. Jana, "Generalized optimization procedure for rotational magnetized direction permanent magnet thrust bearing configuration," Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., Vol. 233, No. 7, 2563-2573, 2019.
doi:10.1177/0954406218786976 Google Scholar
21. Lijesh, K. P., M. Doddamani, and S. I. Bekinal, "A pragmatic optimization of axial stack-radial passive magnetic bearings," J. Tribol., Vol. 140, No. 2, 1-9, 2018.
doi:10.1115/1.4037847 Google Scholar
22. Lijesh, K. P., M. Doddamani, S. I. Bekinal, and S. M. Muzakkir, "Multi-objective optimization of stacked radial passive magnetic bearing," Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., Vol. 232, No. 9, 1140-1159, 2018.
doi:10.1177/1350650117733374 Google Scholar