1. Cox, J. T. and G. Hass, Antireflection Coatings Physics of Thin Films, 239-304, ed. G. Hass and R. E. Thun, Academic, 1964.
2. Knittl, Z., Optics of Thin Films, Wiley, 1976.
3. Yu, W., L. Shen, Y. Long, P. Shen, W. Guo, W. Chen, and S. Ruan, Highly Efficient and High Transmittance Semitransparent Polymer Solar Cells with One-dimensional Photonic Crystals as Distributed Bragg Reflectors, Published by Elsevier B.V., 2013.
4. Yu, W., X. Jia, Y. Long, L. Shen, Y. Liu, W. Guo, and S. Ruan, "Highly efficient semitransparent polymer solar cells with color rendering index approaching 100 using one-dimensional photonic crystal," ACS Appl. Mater. Interfaces, Vol. 7, 9920-9928, 2015.
doi:10.1021/acsami.5b02039 Google Scholar
5. Geetha Priyadarshini, B. and A. K. Sharma, "Design of multi-layer anti-reflection coating for terrestrial solar panel glass," Bulletin of Materials Science, Vol. 39, No. 3, 683-689, Indian Academy of Sciences, 2016.
doi:10.1007/s12034-016-1195-x Google Scholar
6. Matsuoka, Y., S. Mathonneire, S. Peters, and W. Ted Masselink, "Broadband multilayer anti-reflection coating for mid-infrared range from 7 μm to 12 μm," Applied Optics, Vol. 57, No. 7, 1645-1649, 2018.
doi:10.1364/AO.57.001645 Google Scholar
7. Ismail Fathima, M. and K. S. Joseph Wilson, "Role of multilayer antireflective coating in ZnO based dye sensitized solar cell,", Elsevier Ltd, 2019. Google Scholar
8. Deka, S. and W. Mohammed, "Enhancement of light absorption using nanoparticles embedded double layer anti reflection coating," Engineering Journal, 2020. Google Scholar
9. Guo, X., X. Quan, Z. Li, Q. Li, B. Zhang, X. Zhang, and C. Song, "Broadband anti-reflection coatings fabricated by precise time-controlled and oblique-angle deposition methods," Coatings, Vol. 11, 492, 2021.
doi:10.3390/coatings11050492 Google Scholar
10. Macleod, H. A., Thin-Film Optical Filters, Taylor & Francis, 2010.
doi:10.1201/9781420073034
11. Walheim, S., E. Schaffer, J. Mlynek, and U. Steiner, "Nanophase-separated polymer films as high-performance antireflection coatings," Science, Vol. 283, 520-522, 1999.
doi:10.1126/science.283.5401.520 Google Scholar
12. Deng, C. and H. Ki, "Pulsed laser deposition of refractive-index-graded broadband antireflection coatings for silicon solar cells," Sol. Energy Mater. Sol. Cells, Vol. 147, 37-45, 2016.
doi:10.1016/j.solmat.2015.11.043 Google Scholar
13. Uzum, A., M. Kuriyama, H. Kanda, Y. Kimura, K. Tanimoto, and S. Ito, "Non-vacuum processed polymer composite antireflection coating films for silicon solar cells," Energies, Vol. 9, 633, 2016.
doi:10.3390/en9080633 Google Scholar
14. Makableh, Y. F., R. Vasan, J. C. Sarker, A. I. Nusir, S. Seal, and M. O. Manasreh, "Enhancement of GaAs solar cell performance by using a ZnO sol-gel anti-reflection coating," Sol. Energy Mater. Sol. Cells, Vol. 123, 178-182, 2014.
doi:10.1016/j.solmat.2014.01.007 Google Scholar
15. Kosten, E. D., J. H. Atwater, J. Parsons, A. Polman, and H. Atwater, "Highly efficient GaAs solar cells by limiting light emission angle," Light Sci. Appl., Vol. 2, e45, 2013.
doi:10.1038/lsa.2013.1 Google Scholar
16. Jung, S. M., Y. H. Kim, S. I. Kim, and S. I. Yoo, , Vol. 11, 538, Current Applied Physics, 2011.
17. Schallenberg, U., "Design principles for broadband AR coatings," Advances in Optical Thin Films III, Proc. of SPIE, Vol. 7101, 710103-1, SPIE, 2008. Google Scholar
18. Vidal, B. and A. Fomier, "Nonquarterwave multilayer filters: Optical monitoring with a minicomputer allowing correction of thickness errors," Appl. Opt., Vol. 18, 3857-3862, 1979.
doi:10.1364/AO.18.003857 Google Scholar
19. Macleod, H. A., Thin Film Optical Filters, Institute of Physics, 2001.
doi:10.1201/9781420033236