Vol. 117
Latest Volume
All Volumes
Evaluation of a New Process for the Additive Manufacturing of Metal Antennas
Progress In Electromagnetics Research M, Vol. 117, 59-69, 2023
This paper presents a new process for additive manufacturing of purely metallic antennas based on Fused Deposition Modeling (FDM), with a filament composed by a mix between rounded shape copper powders with particle size in the range from 20 to 80 μm embedded in a polymeric matrix, to accomplish the desired antenna shape, followed by a post-processing involving de-binding to remove the base polymer and a further sintering process for obtaining a purely metallic component. This new process is validated by means of a prototype antenna consisting on a modified tri-band cactus monopole that is manufactured and measured demonstrating results in accordance with standard and alternative additive manufacturing techniques reported in literature.
Germán Augusto Ramírez Arroyave, David Leonardo Galindo Huertas, Daniel Felipe Garzón Cuervo, Manuel Ricardo Pérez Cerquera, Liz Karen Herrera Quintero, and Javier Leonardo Araque Quijano, "Evaluation of a New Process for the Additive Manufacturing of Metal Antennas," Progress In Electromagnetics Research M, Vol. 117, 59-69, 2023.

1. Gibson, I., D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies, Springer-Verlag, New York, 2015.

2. Gao, W., Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, "The status, challenges, and future of additive manufacturing in engineering," Computer-Aided Design, Vol. 69, 65-89, 2015, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0010448515000469.

3. Attaran, M., "The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing," Business Horizons, Vol. 60, No. 5, 677-688, 2017, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0007681317300897.

4. Tofail, S. A., E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, and C. Charitidis, "Additive manufacturing: Scientific and technological challenges, market uptake and opportunities," Materials Today, Vol. 21, No. 1, 22-37, 2018, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1369702117301773.

5. DebRoy, T., H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, "Additive manufacturing of metallic components --- Process, structure and properties," Progress in Materials Science, Vol. 92, 112-224, 2018, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0079642517301172.

6. Frazier, W. E., "Metal additive manufacturing: A review," Journal of Materials En- gineering and Performance, Vol. 23, No. 6, 1917-1928, Jun. 2014, [Online]. Available: https://doi.org/10.1007/s11665-014-0958-z.

7. Herzog, D., V. Seyda, E. Wycisk, and C. Emmelmann, "Additive manufacturing of metals," Acta Materialia, Vol. 117, 371-392, 2016, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1359645416305158.

8. Ramirez Arroyave, G. A. and J. L. Araque Quijano, "Evaluation of additive manufacturing processes for 3-D multiband antennas," 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), 589-592, Sept. 2018.

9. Ramírez Arroyave, G. A. and J. L. Araque Quijano, "Optimization and additive manufacture of a miniature 3-D pixel antenna for dual-band operation," Progress In Electromagnetics Research B, Vol. 85, 163-180, 2019.

10. Huang, Y., X. Gong, S. Hajela, and W. J. Chappell, "Layer-by-layer stereolithography of three-dimensional antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1A, 276-279, Jul. 2005.

11. Maas, J., B. Liu, S. Hajela, Y. Huang, X. Gong, and W. J. Chappell, "Laser-based layer-by-layer polymer stereolithography for high-frequency applications," Proceedings of the IEEE, Vol. 105, No. 4, 645-654, Apr. 2017.

12. Adams, J. J., E. B. Duoss, T. F. Malkowski, M. J. Motala, B. Y. Ahn, R. G. Nuzzo, J. T. Bernhard, and J. A. Lewis, "Conformal printing of electrically small antennas on three-dimensional surfaces," Advanced Materials, Vol. 23, No. 11, 1335-1340, 2011, [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201003734.

13. Menéndez, L. G., O. S. Kim, F. Persson, M. Nielsen, and O. Breinbjerg, "3D printed 20/30- GHz dual-band offset stepped-reflector antenna," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-2, Apr. 2015.

14. Ghazali, M. I. M., E. Gutierrez, J. C. Myers, A. Kaur, B. Wright, and P. Chahal, "Affordable 3D printed microwave antennas," 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 240-246, May 2015.

15. Gjokaj, V., P. Chahal, J. Papapolymerou, and J. D. Albrecht, "A novel 3D printed Vivaldi antenna utilizing a substrate integrated waveguide transition," 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 1253-1254, Jul. 2017.

16. Van der Vorst, M. and J. Gumpinger, "Applicability of 3D printing techniques for compact Ku-band medium/high-gain antennas," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Apr. 2016.

17. O. Tech., "Metal 3D printed custom antennas,", 2018, [Online]. Available: https://www.optisys.tech/.

18. Foged, L. J., A. Giacomini, R. Morbidini, F. Saccardi, V. Schirosi, M. Boumans, B. Gerg, and D. Melachrinos, "Investigation of additive manufacturing for broadband choked horns at X/Ku band," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2003-2007, Nov. 2018.

19. SENER, "Sener aeroespacial and catec develop a 3D-printed metal antenna for the European Space Agency's Proba-3 space mission,", 2019, [Online]. Available: https://www.group.sener/press-releases/sener-aeroespacial-and-catec-develop-a-3d-printed-metal-antenna-for-the-european-space-agencys-proba-3-space-mission/.

20. Helena, D., A. Ramos, T. Varum, and J. N. Matos, "Antenna design using modern additive manufacturing technology: A review," IEEE Access, Vol. 8, 177 064-177 083, 2020.

21. Ramírez Arroyave, G. A., "Design of a multiport frequency reconfigurable antenna suitable for IMT-advanced communications systems,", Ph.D. dissertation, National University of Colombia, Ciudad Universitaria, Bogotá, 2020. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/78517.

22. Pan, C., C. Huang, and T. Horng, "A new printed G-shaped monopole antenna for dual-band WLAN applications," Microwave and Optical Technology Letters, Vol. 45, No. 4, 295-297, 2005, [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mop.20800.

23. Zachou, V., C. G. Christodoulou, M. T. Chryssomallis, D. Anagnostou, and S. Barbin, "Planar monopole antenna with attached sleeves," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 286-289, 2006.

24. Mishra, S. K., R. K. Gupta, A. Vaidya, and J. Mukherjee, "A compact dual-band fork-shaped monopole antenna for bluetooth and UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 627-630, 2011.

25. Garzón Cuervo, D. F., L. López Kleine, and L. K. Herrera Quintero, "Ingeniería de fabricación rápida en la industria 4.0: Estudio de propiedades mecánicas y eléctricas de piezas metálicas fabricadas mediante manufactura aditiva,", Tech. Rep., Universidad Nacional de Colombia, 2020.