Vol. 117
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-05-30
Evaluation of a New Process for the Additive Manufacturing of Metal Antennas
By
Progress In Electromagnetics Research M, Vol. 117, 59-69, 2023
Abstract
This paper presents a new process for additive manufacturing of purely metallic antennas based on Fused Deposition Modeling (FDM), with a filament composed by a mix between rounded shape copper powders with particle size in the range from 20 to 80 μm embedded in a polymeric matrix, to accomplish the desired antenna shape, followed by a post-processing involving de-binding to remove the base polymer and a further sintering process for obtaining a purely metallic component. This new process is validated by means of a prototype antenna consisting on a modified tri-band cactus monopole that is manufactured and measured demonstrating results in accordance with standard and alternative additive manufacturing techniques reported in literature.
Citation
Germán Augusto Ramírez Arroyave, David Leonardo Galindo Huertas, Daniel Felipe Garzón Cuervo, Manuel Ricardo Pérez Cerquera, Liz Karen Herrera Quintero, and Javier Leonardo Araque Quijano, "Evaluation of a New Process for the Additive Manufacturing of Metal Antennas," Progress In Electromagnetics Research M, Vol. 117, 59-69, 2023.
doi:10.2528/PIERM22122108
References

1. Gibson, I., D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies, Springer-Verlag, New York, 2015.
doi:10.1007/978-1-4939-2113-3

2. Gao, W., Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, "The status, challenges, and future of additive manufacturing in engineering," Computer-Aided Design, Vol. 69, 65-89, 2015, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0010448515000469.
doi:10.1016/j.cad.2015.04.001

3. Attaran, M., "The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing," Business Horizons, Vol. 60, No. 5, 677-688, 2017, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0007681317300897.
doi:10.1016/j.bushor.2017.05.011

4. Tofail, S. A., E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, and C. Charitidis, "Additive manufacturing: Scientific and technological challenges, market uptake and opportunities," Materials Today, Vol. 21, No. 1, 22-37, 2018, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1369702117301773.
doi:10.1016/j.mattod.2017.07.001

5. DebRoy, T., H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, "Additive manufacturing of metallic components --- Process, structure and properties," Progress in Materials Science, Vol. 92, 112-224, 2018, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0079642517301172.
doi:10.1016/j.pmatsci.2017.10.001

6. Frazier, W. E., "Metal additive manufacturing: A review," Journal of Materials En- gineering and Performance, Vol. 23, No. 6, 1917-1928, Jun. 2014, [Online]. Available: https://doi.org/10.1007/s11665-014-0958-z.
doi:10.1007/s11665-014-0958-z

7. Herzog, D., V. Seyda, E. Wycisk, and C. Emmelmann, "Additive manufacturing of metals," Acta Materialia, Vol. 117, 371-392, 2016, [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1359645416305158.
doi:10.1016/j.actamat.2016.07.019

8. Ramirez Arroyave, G. A. and J. L. Araque Quijano, "Evaluation of additive manufacturing processes for 3-D multiband antennas," 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), 589-592, Sept. 2018.
doi:10.1109/ICEAA.2018.8520514

9. Ramírez Arroyave, G. A. and J. L. Araque Quijano, "Optimization and additive manufacture of a miniature 3-D pixel antenna for dual-band operation," Progress In Electromagnetics Research B, Vol. 85, 163-180, 2019.
doi:10.2528/PIERB19071809

10. Huang, Y., X. Gong, S. Hajela, and W. J. Chappell, "Layer-by-layer stereolithography of three-dimensional antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1A, 276-279, Jul. 2005.

11. Maas, J., B. Liu, S. Hajela, Y. Huang, X. Gong, and W. J. Chappell, "Laser-based layer-by-layer polymer stereolithography for high-frequency applications," Proceedings of the IEEE, Vol. 105, No. 4, 645-654, Apr. 2017.
doi:10.1109/JPROC.2016.2629179

12. Adams, J. J., E. B. Duoss, T. F. Malkowski, M. J. Motala, B. Y. Ahn, R. G. Nuzzo, J. T. Bernhard, and J. A. Lewis, "Conformal printing of electrically small antennas on three-dimensional surfaces," Advanced Materials, Vol. 23, No. 11, 1335-1340, 2011, [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201003734.
doi:10.1002/adma.201003734

13. Menéndez, L. G., O. S. Kim, F. Persson, M. Nielsen, and O. Breinbjerg, "3D printed 20/30- GHz dual-band offset stepped-reflector antenna," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-2, Apr. 2015.

14. Ghazali, M. I. M., E. Gutierrez, J. C. Myers, A. Kaur, B. Wright, and P. Chahal, "Affordable 3D printed microwave antennas," 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 240-246, May 2015.
doi:10.1109/ECTC.2015.7159599

15. Gjokaj, V., P. Chahal, J. Papapolymerou, and J. D. Albrecht, "A novel 3D printed Vivaldi antenna utilizing a substrate integrated waveguide transition," 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 1253-1254, Jul. 2017.

16. Van der Vorst, M. and J. Gumpinger, "Applicability of 3D printing techniques for compact Ku-band medium/high-gain antennas," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Apr. 2016.

17. O. Tech. "Metal 3D printed custom antennas,", 2018, [Online]. Available: https://www.optisys.tech/.

18. Foged, L. J., A. Giacomini, R. Morbidini, F. Saccardi, V. Schirosi, M. Boumans, B. Gerg, and D. Melachrinos, "Investigation of additive manufacturing for broadband choked horns at X/Ku band," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2003-2007, Nov. 2018.
doi:10.1109/LAWP.2018.2868611

19. SENER "Sener aeroespacial and catec develop a 3D-printed metal antenna for the European Space Agency's Proba-3 space mission,", 2019, [Online]. Available: https://www.group.sener/press-releases/sener-aeroespacial-and-catec-develop-a-3d-printed-metal-antenna-for-the-european-space-agencys-proba-3-space-mission/.

20. Helena, D., A. Ramos, T. Varum, and J. N. Matos, "Antenna design using modern additive manufacturing technology: A review," IEEE Access, Vol. 8, 177 064-177 083, 2020.
doi:10.1109/ACCESS.2020.3027383

21. Ramírez Arroyave, G. A., "Design of a multiport frequency reconfigurable antenna suitable for IMT-advanced communications systems,", Ph.D. dissertation, National University of Colombia, Ciudad Universitaria, Bogotá, 2020. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/78517.

22. Pan, C., C. Huang, and T. Horng, "A new printed G-shaped monopole antenna for dual-band WLAN applications," Microwave and Optical Technology Letters, Vol. 45, No. 4, 295-297, 2005, [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mop.20800.
doi:10.1002/mop.20800

23. Zachou, V., C. G. Christodoulou, M. T. Chryssomallis, D. Anagnostou, and S. Barbin, "Planar monopole antenna with attached sleeves," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 286-289, 2006.
doi:10.1109/LAWP.2006.876970

24. Mishra, S. K., R. K. Gupta, A. Vaidya, and J. Mukherjee, "A compact dual-band fork-shaped monopole antenna for bluetooth and UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 627-630, 2011.
doi:10.1109/LAWP.2011.2159572

25. Garzón Cuervo, D. F., L. López Kleine, and L. K. Herrera Quintero, "Ingeniería de fabricación rápida en la industria 4.0: Estudio de propiedades mecánicas y eléctricas de piezas metálicas fabricadas mediante manufactura aditiva,", Tech. Rep., Universidad Nacional de Colombia, 2020.