1. Ahmad, I., H. Sun, Y. Zhang, and A. Samad, "High gain rectangular slot microstrip patch antenna for 5G mm-Wave wireless communication," International Conference on Computer and Communication Systems (ICCCS), Shanghai, 2020.
2. Roh, W., J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750
3. Ghouz, H. H., M. F. Sree, and M. A. Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, Vol. 8, 9532-9539, 2020.
doi:10.1109/ACCESS.2019.2963644
4. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.
5. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.
6. Kraus, J. D. and R. J. Marhefka, Antennas for All Applications, John Wiley & Sons, 2002.
7. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, 2004.
8. Chen, Z. N. and M. Y. Chia, "Broadband Planar Antennas: Design and Applications," John Wiley & Sons, 2006.
9. Al-Hetar, A. M. and E. A. Aqlan, "High performance & compact size of microstrip antenna for 5G applications," 2021 International Conference of Technology, Science and Administration (ICTSA), 1-3, 2021.
10. Veerendra, K., G. P. Ratna, and S. N. Bhavanam, "Design of microstrip patch antenna with parasitic elements for wideband applications," International Journal of Innovative Research in Technology, Vol. 6, 324-327, 2019.
11. Dheyab, E. and N. Qasem, "Design and optimization of rectangular microstrip patch array antenna using frequency selective surfaces for 60 GHz," International Journal of Applied Engineering Research, Vol. 11, No. 7, 4679-4687, 2016.
12., 5G Spectrum GSMA Public Policy Position. (2022). [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2022/06/5G-Spectrum-Positions.pdf.
13., Qualcomm, Global update on spectrum for 4G & 5G, 2020. [Online]. Available: https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf.
14., GTW Series. (2019). IMT in Bands Between 24.25 GHz and 86 GHz to Bolster 5G, WRC Series, WRC-19 Agenda Item 1.13. [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/07/Agenda-Item-1.13-for-5G.pdf.
15. I. Workshop "5G and spectrum: Different approaches, iTU Work-shop: 5G and new technologies,", Lome, Republic of Togo, 2019. [Online]. Available: https://www.itu.int/en/ITU-D/Regulatory-Market/Documents/Events2019/Togo/5G-Ws/Ses4 Gomes-5Gspectrum-Assignments.pdf.
16., International Telecommunication Union, Final Acts, World Radiocommunication Conference 2019 (WRC-19). [Online]. Available: https://www.itu.int/dms pub/itu-r/opb/act/R-ACT-WRC.14-2019-PDF-E.pdf.
17. Ghouz, H. H., "Novel compact and dual-broadband microstrip MIMO antennas for wireless applications," Progress In Electromagnetics Research B, Vol. 63, 107-121, 2015.
doi:10.2528/PIERB15051304
18. Binshitwan, A. A., S. M. Keskeso, A. A. Alquzayzi, and A. Elbarsha, "38 GHz rectangular microstrip antenna with DGS for 5G applications," 2021 International Congress of Advanced Technology and Engineering (ICOTEN), 1-4, 2021.
19. Sneha, A. K., "Design of rectangular patch antenna using tapered line transfer coupled feed," International Journal of Engineering, Management & Sciences (IJEMS), Vol. 1, Oct. 2014.
20. Sharma, S., C. C. Tripathi, and R. Rishi, "Impedance matching techniques for microstrip patch antenna," Indian Journal of Science and Technology, Vol. 10, 1-16, 2017.
doi:10.17485/ijst/2013/v6i7.7
21. Rahman, M. Z., K. C. Nath, and M. Mynuddin, "Performance analysis of an inset-fed circular microstrip patch antenna using different substrates by varying notch width for wireless communications," International Journal of Electromagnetics and Applications, Vol. 10, 19-29, 2020.
22. Prabhakar, D., P. M. Rao, and D. M. Satyanarayana, "Characteristics of patch antenna with notch gap variation for Wi-Fi application," International Journal of Applied Engineering Research, Vol. 11, No. 8, 5741-5746, 2016.
23. Rahman, M. Z., M. Mynuddin, and K. C. Debnath, "The significance of notch width on the performance parameters of inset feed rectangular microstrip patch antenna," International Journal of Electromagnetics and Applications, Vol. 10, 7-18, 2020.
24. Joshi, A. and R. Singhal, "Vertex-fed hexagonal antenna with low cross-polarization levels," Advances in Electrical and Electronic Engineering, Vol. 17, No. 2, 138-145, 2019.
doi:10.15598/aeee.v17i2.3004
25. Mishra, B., V. Singh, and R. Singh, "Gap coupled dual-band petal shape patch antenna for WLAN/WiMAX applications," Advances in Electrical and Electronic Engineering, Vol. 16, No. 2, 185, 2018.
doi:10.15598/aeee.v16i2.2416
26. Emara, H. M., H. H. Ghouz, S. K. El Dyasti, and M. F. Sree, "Novel compact microstrip antennas with two different bands for 5G applications," 2022 International Telecommunications Conference (ITC-Egypt), 1-6, 2022.
27. Emara, H. M., S. K. El Dyasti, H. H. Ghouz, and M. F. Sree, "Design of a compact dual-frequency microstrip antenna using DGS structure for millimeter-wave applications," Journal of Advanced Research in Applied Sciences and Engineering Technology, Vol. 28, No. 3, 221-234, 2022.
doi:10.37934/araset.28.3.221234
28., Southwest microwave, Microwave Products Division, End Launch Connectors. https://mpd.southwestmicrowave.com/product-category/end-launch-connectors/.
29. Deckmyn, T., M. Cauwe, D. V. Ginste, H. Rogier, and S. Agneessens, "Dual-band (28, 38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2405-2412, Apr. 2019.
doi:10.1109/TAP.2019.2894325
30. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401
31. Rahayu, Y. and M. I. Hidayat, "Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications," 2nd International Conference on Telematics and Future Generation Networks (TAFGEN), 93-97, 2018.
doi:10.1109/TAFGEN.2018.8580487
32. Chu, H. and Y. X. Guo, "A filtering dual-polarized antenna subarray targeting for base stations in millimeter-wave 5G wireless communications," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 6, 964-973, Jun. 2017.
doi:10.1109/TCPMT.2017.2694848
33. Mahmoud, K. R. and A. M. Montaser, "Performance of tri-band multi-polarized array antenna for 5G mobile base station adopting polarization and directivity control," IEEE Access, Vol. 6, 8682-8694, Mar. 2018.
doi:10.1109/ACCESS.2018.2805802
34. Mahmoud, K. R. and A. M. Montaser, "Synthesis of multi-polarised upside conical frustum array antenna for 5G mm-Wave base station at 28/38 GHz," IET Microwave, Antennas and Propagation, Vol. 12, No. 9, 1559-1569, Jul. 2018.
doi:10.1049/iet-map.2017.1138
35. Hasan, M. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, Aug. 2019.
doi:10.1080/09205071.2019.1617790
36. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwaves Antennas & Propagation, Vol. 12, No. 5, 672-677, Apr. 2018.
doi:10.1049/iet-map.2017.0467