1. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020, doi: 10.1109/ACCESS.2020.3020952.
doi:10.1109/ACCESS.2020.3020952 Google Scholar
2. Recioui, A., "Capacity optimization of MIMO systems involving conformal antenna arrays using a search group algorithm," Algerian Journal of Signals and Systems, Vol. 5, No. 4, 209-214, 2020.
doi:10.51485/ajss.v5i4.118 Google Scholar
3. Recioui, A. and Y. Grainat, "Application and optimization of MIMO communication in wide area monitoring systems," International Journal of Data Science, Vol. 1, No. 2, 82-98, 2020.
doi:10.18517/ijods.1.2.82-98.2020 Google Scholar
4. Zhao, L., F. Liu, X, Shen, et al. "A high-pass antenna interference cancellation chip for mutual coupling reduction of antennas in contiguous frequency bands," IEEE Access, Vol. 6, 38097-38105, 2018.
doi:10.1109/ACCESS.2018.2853709 Google Scholar
5. Liu, F., J. Guo, L. Zhao, et al. "Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1751-1756, 2020.
doi:10.1109/TAP.2020.3016388 Google Scholar
6. Luo, S., P. Mei, Y. Zhang, G. F. Pedersen, and S. Zhang, "Decoupling of dual-polarized antenna arrays using non-resonant metasurface," Sensors, Vol. 23, No. 1, 152, Dec. 2022, doi: 10.3390/s23010152.
doi:10.3390/s23010152 Google Scholar
7. Kai, Y., Y. Li, and X. Liu, "Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures," The Applied Computational Electromagnetics Society Journal (ACES), 758-763, 2018. Google Scholar
8. Guo, J., F. Liu, L. Zhao, et al. "Meta-surface antenna array decoupling designs for two linear polarized antennas coupled in H-plane and E-plane," IEEE Access, Vol. 7, 100442-100452, 2019.
doi:10.1109/ACCESS.2019.2930687 Google Scholar
9. Chae, S. H., S. Oh, and S. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 122-125, 2007, doi: 10.1109/LAWP.2007.893109.
doi:10.1109/LAWP.2007.893109 Google Scholar
10. Yang, L., T. Li, and S. Yan, "Highly compact MIMO antenna system for LTE/ISM applications," International Journal of Antennas and Propagation, 2015, https://doi.org/10.1155/2015/714817. Google Scholar
11. Anitha, R., S. Mathew, P. V. Vinesh, P. Mohanan, and K. Vasudevan, "Compact 4 port MIMO antenna using polarization and pattern diversity," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), 1-4, 2015, doi: 10.1109/WAMICON.2015.7120360. Google Scholar
12. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, Oct. 2016, doi: 10.1109/TAP.2016.2593932.
doi:10.1109/TAP.2016.2593932 Google Scholar
13. Iqbal, A., O. A Saraereh, A. Bouazizi, and A. Basir, "Metamaterial-based highly isolated MIMO antenna for portable wireless applications," Electronics, Vol. 7, No. 10, 267, Oct. 2018, doi: 10.3390/electronics7100267.
doi:10.3390/electronics7100267 Google Scholar
14. Sree, G. N. J. and S. Nelaturi, "Opportunistic control of crescent shape MIMO design for lower sub 6 GHz 5G applications," Microw. Opt. Technol. Lett., Vol. 64, 896-904, 2022, doi: 10.1002/mop.33211.
doi:10.1002/mop.33211 Google Scholar
15. Gomase, R. and S. Nandi, "A circular patch dual-band MIMO antenna for sub-6 GHz applications," 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), 1-4, 2019, doi: 10.1109/InCAP47789.2019.9134499. Google Scholar
16. Krishnamoorthy, R., A. Desai, R. Patel, et al. "4 element compact triple band MIMO antenna for sub-6 GHz 5G wireless applications," Wireless Netw., Vol. 27, 3747-3759, 2021, https://doi.org/10.1007/s11276-021-02734-8.
doi:10.1007/s11276-021-02734-8 Google Scholar
17. Desai, A., et al. "Transparent 2-element 5G MIMO antenna for sub-6 GHz applications," Electronics, Vol. 11, No. 2, 251, Jan. 2022, doi: 10.3390/electronics11020251.
doi:10.3390/electronics11020251 Google Scholar
18. Sree, G. N. J. and S. Nelaturi, "Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications," AEU-International Journal of Electronics and Communications, Vol. 137, 153797, 2021. Google Scholar
19. Wang, F., Z. Duan, X. Wang, et al. "High isolation millimeter-wave wideband MIMO antenna for 5G communication," International Journal of Antennas and Propagation, 2019, https://doi.org/10.1155/2019/4283010. Google Scholar
20. Khandelwal, M. and K. Binod, "Implementation of four-port MIMO diversity microstrip antenna with suppressed mutual coupling and cross-polarized radiations," Microsystem Technologies, 993-1000, 2020, doi: 10.1007/s00542-019-04574-1. Google Scholar
21. Khalid, M., S. I. Naqvi, N. Hussain, et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, Jan. 2020, doi: 10.3390/electronics9010071.
doi:10.3390/electronics9010071 Google Scholar
22. Sehrai, D. A., M. Abdullah, A. Altaf, et al. "A novel high gain wideband MIMO antenna for 5G millimeter wave applications," Electronics, Vol. 9, No. 6, 1031, Jun. 2020, doi: 10.3390/electronics9061031.
doi:10.3390/electronics9061031 Google Scholar
23. Amrutha, P., K. L. V. Prasad, and S. Kumar, "Highly isolated fork-shaped MIMO antenna for 5G application," 2021 Asian Conference on Innovation in Technology (ASIANCON), 1-4, 2021, doi: 10.1109/ASIANCON51346.2021.9545004. Google Scholar
24. Hussain, N., W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications," AEU - International Journal of Electronics and Communications, Vol. 132, 2021, https://doi.org/10.1016/j.aeue.2021.153612. Google Scholar
25. Fan, C., B. Wu, Y. Hu, Y. Zhao, and T. Su, "Millimeter-wave pattern recongurable Vivaldi antenna using tunable resistor based on graphene," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4939-4943, Jun. 2020, doi: 10.1109/TAP.2019.2952639.
doi:10.1109/TAP.2019.2952639 Google Scholar
26. Gibson, P. J., "The Vivaldi aerial," 1979 9th European Microwave Conference, 101-105, 1979, doi: 10.1109/EUMA.1979.332681.
doi:10.1109/EUMA.1979.332681 Google Scholar
27. Gjokaj, V., J. Papapolymerou, J. D. Albrecht, B. Wright, and P. Chahal, "A compact receive module in 3-D printed Vivaldi antenna," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 10, No. 2, 343-346, Feb. 2020, doi: 10.1109/TCPMT.2019.2961345.
doi:10.1109/TCPMT.2019.2961345 Google Scholar
28. Shan, J., A. Xu, and J. Lin, "A parametric study of microstrip-fed Vivaldi antenna," 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 1099-1103, 2017, doi: 10.1109/CompComm.2017.8322713.
doi:10.1109/CompComm.2017.8322713 Google Scholar
29. Li, Z., C. Yin, and X. Zhu, "Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019, doi: 10.1109/ACCESS.2019.2906338.
doi:10.1109/ACCESS.2019.2906338 Google Scholar
30. Li, Q. and Y. Sun, "A high isolation UWB MIMO antenna based on angle diversity," 2020 IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2020, doi: 10.1109/IWS49314.2020.9360073. Google Scholar
31. Fritz-Andrade, E., H. Jardon-Aguilar, and J. A. Tirado-Mendez, "The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, e22113, 2020, https://doi.org/10.1002/mmce.22113. Google Scholar
32. Elsheakh, D. M. and E. A. Abdallah, "Ultrawideband Vivaldi antenna for DVB-T, WLAN and WiMAX applications," Research Article in International Journal of Antennas and Propagation, 2014, http://dx.doi.org/10.1155/2014/761634. Google Scholar
33. Zhu, Y., D. Su, W. Xie, Z. Liu, and K. Zuo, "Design of a novel miniaturized Vivaldi antenna with loading resistance for ultra wideband (UWB) applications," ACES Journal, Vol. 32, No. 10, 895-900, Jul. 2021. Google Scholar
34. Paul, L. C. and M. M. Islam, "A super wideband directional compact Vivaldi antenna for lower 5G satellite applications," Research Article in International Journal of Antennas and Propagation, 2021, https://doi.org/10.1155/2021/8933103. Google Scholar
35. Ren, J., H. Fan, Q. Tang, Z. Yu, Y. Xiao, and X. Zhou, "An ultra-wideband Vivaldi antenna system for long-distance electromagnetic detection," Applied Sciences, Vol. 12, No. 1, 528, Jan. 2022, doi: 10.3390/app12010528.
doi:10.3390/app12010528 Google Scholar
36. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," 2015 23rd Telecommunications Forum Telfor (TELFOR), 587-590, 2015, doi: 10.1109/TELFOR.2015.7377536.
doi:10.1109/TELFOR.2015.7377536 Google Scholar
37. Zhu, S., H. Liu, Z. Chen, and P. Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 776-779, May 2018, doi: 10.1109/LAWP.2018.2816038.
doi:10.1109/LAWP.2018.2816038 Google Scholar
38. Ikram, M., N. Nguyen-Trong, and A. M. Abbosh, "Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices," IEEE Access, Vol. 7, 159112-159118, 2019, doi: 10.1109/ACCESS.2019.2950660.
doi:10.1109/ACCESS.2019.2950660 Google Scholar
39. Truong, L., G. Truong, and T. Tran, "A new linear printed Vivaldi antenna array with low side lobe level and high gain for the band 3.5 GHz," REV Journal on Electronics and Communications, 2020, doi: 10.10.21553/rev-jec.247. Google Scholar
40. Aathmanesan, T., "Novel slotted hexagonal patch antenna for sub-6 GHz 5G wireless applications," ICTACT Journal on Microelectronics, 1010-1013, 2021, doi: 10.21917/ijme.2021.0176. Google Scholar
41. Mishra, M., S. Chaudhuri, and R. S. Kshetrimayum, "Low mutual coupling four-port MIMO antenna array for 3.5 GHz WiMAX application," 2020 IEEE Region 10 Symposium (TENSYMP), 791-794, 2020, doi: 10.1109/TENSYMP50017.2020.923104.
doi:10.1109/TENSYMP50017.2020.9231046 Google Scholar
42. Tebache, S., A. Belouchrani, F. Ghanem, and A. Mansoul, "Novel reliable and practical decoupling mechanism for strongly coupled antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 5892-5899, Sept. 2019, doi: 10.1109/TAP.2018.2885.
doi:10.1109/TAP.2018.2885457 Google Scholar