Vol. 131
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-24
A Novel Diagonally Symmetric Fractal Antenna with Wideband Characteristics for Internet of Things Applications
By
Progress In Electromagnetics Research C, Vol. 131, 145-158, 2023
Abstract
The Internet of Things (IoT) has become a vital part of life, with an increasing number of connected devices; its small size, and high rate of data transmission have attracted the attention of many researchers. Antenna plays a major role in providing wireless signal connectivity. With the intention to provide wider bandwidth to improve the rate of data transmission with the smaller size of the antenna, in this work, a third-level iterated diagonally symmetric fractal antenna has been proposed. A partial ground plane with a notch has been experimented to adjust the antenna impedance over a wider bandwidth parametrically. The antenna has been optimized to eliminate the stopband based on surface current distribution. Following optimization, a modal shift separated two overlapping modes and produced a new resonance close to the stopband. The proposed antenna covers all IoT applications between 2 GHz and 7 GHz. The design has been simulated in mentor graphics and CST studio, and it is verified on a vector network analyser and in an anechoic chamber. The measured S11 and gain are in good agreement with the simulated results. The overall antenna size is 40 mm in length, 40 mm in width, and 1.6 mm in height, and it is fabricated on an FR-4 substrate with a dielectric constant of 4.4.
Citation
Geeta B. Kalkhambkar, Rajashri Khanai, and Pradeep Chindhi, "A Novel Diagonally Symmetric Fractal Antenna with Wideband Characteristics for Internet of Things Applications," Progress In Electromagnetics Research C, Vol. 131, 145-158, 2023.
doi:10.2528/PIERC23020103
References

1. Mohanty, M. N., S. Satrusallya, and T. Al Smadi, "Antenna selection criteria and parameters for IoT application," Printed Antennas Design and Challenges, CRC Press, 2023.

2. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, 2016.

3. Khan, U. R., J. A. Sheikh, A. Junaid, R. Amin, S. Ashraf, and S. Ahmed, "Design of a compact hybrid Moore's fractal inspired wearable antenna for IoT enabled bio-telemetry in diagnostic health monitoring system," IEEE Access, Vol. 10, 116129-116140, 2022, doi: 10.1109/ACCESS.2022.3219442.
doi:10.1109/ACCESS.2022.3219442

4. Puente, C., J. Romeu, R. Pous, X. Garcia, and F. Benitez, "Fractal multiband antenna based on the Sierpinski gasket," Electronics Letters, Vol. 32, No. 1, 1-2, 1996.
doi:10.1049/el:19960033

5. Parker, E. A. and A. N. A. El Sheikh, "Convoluted array elements and reduced size unit cells for frequency-selective surfaces," IEE Proceedings. Part H, Vol. 1, 19-22, 1991.

6. Sediq, H. T., J. Nourinia, C. Ghobadi, and B. Mohammadi, "A novel shaped ultrawideband fractal antenna for medical purposes," Biomedical Signal Processing and Control, Vol. 80, Part 2, 104363, February 2023, https://doi.org/10.1016/j.bspc.2022.104363.

7. Mohanty, A. and S. Sahu, "2-D printed 8-element compact UWB diversity antenna for multi-service-multi-mode applications," International Journal of Electronics and Communications, Vol. 151, 154215, July 2022, https://doi.org/10.1016/j.aeue.2022.154215.

8. Mohanty, A. and S. Sahu, "Design of 8-port compact hybrid fractal UWB MIMO antenna with a conjoined reflector-ground integration for isolation improvement," International Journal of Electronics and Communications, Vol. 145, 154102, February 2022, https://doi.org/10.1016/j.aeue.2021.154102.
doi:10.1016/j.aeue.2021.154102

9. Sree, G. N. J. and S. Nelaturi, "Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications," International Journal of Electronics and Communications, Vol. 137, 153797, July 2021, https://doi.org/10.1016/j.aeue.2021.153797.

10. Baqira, M. A., H. Latifa, O. Altintas, M. N. Akhtar, M. Karaaslan, H. Servera, M. Hameed, and N. M. Idreesd, "Fractal metamaterial based multiband absorber operating in 5G regime," Optik, Vol. 266, 169626, September 2022, https://doi.org/10.1016/j.ijleo.2022.169626.
doi:10.1016/j.ijleo.2022.169626

11. Karanam, R. and D. Kakkar, "Artificial neural network optimized ultra wide band fractal antenna for vehicular communication applications," Transactions on Emerging Telecommunications Technologies, Vol. 33, No. 12, e4620, 2022, https://doi.org/10.1002/ett.4620.
doi:10.1002/ett.4620

12. Alqahtani, A., M. T. Islam, M. S. Talukder, M. Samsuzzaman, M. Bakouri, S. Mansouri, T. Almoneef, S. Dokos, and Y. Alharbi, "Slotted monopole patch antenna for microwave-based head imaging applications," Sensors, Vol. 22, 7235, 2022, https://doi.org/10.3390/s22197235.
doi:10.3390/s22197235

13. Desai, A., T. K. Upadhyaya, R. Patel, S. Bhatt, and P. Mankodi, "Wideband high gain fractal antenna for wireless applications," Progress In Electromagnetics Research Letters, Vol. 74, 125-130, 2018.
doi:10.2528/PIERL18011504

14. Jamil, A., M. Rauf, A. Sami, A. Ansari, and M. D. Idrees, "A wideband hybrid fractal ring antenna for WLAN applications," International Journal of Antennas and Propagation, Vol. Article ID 6136916, 8 pages, Hindawi, 2022, https://doi.org/10.1155/2022/6136916, 2022.

15. Strojny, B. T., "Excitation and analysis of characteristic modes on complex antenna structures,", The Ohio State University, 2011.

16. Kalkhambkar, G. B., R. Khanai, and P. Chindhi, "Design and characteristics mode analysis of a cantor set fractal monopole antenna for IoT applications," Progress In Electromagnetics Research C, Vol. 119, 161-175, 2022.
doi:10.2528/PIERC22012106

17. Sagne, D. and R. A. Pandhare, "Design and analysis of inscribed fractal super wideband antenna for microwave applications," Progress In Electromagnetics Research C, Vol. 121, 49-63, 2022.
doi:10.2528/PIERC22030703

18. https://coppermountaintech.com/help-s4/smith-chart-format.html.

19. Goudos, S. K., C. Kalialakis, and R. Mittra, "Evolutionary algorithms applied to antennas and propagation: A review of state of the art," International Journal of Antennas and Propagation, 1-12, 2016, doi: 10.1155/2016/1010459.

20. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, 1995, doi: 10.1109/74.382334.
doi:10.1109/74.382334

21. Lamsalli, M., A. El Hamichi, M. Boussouis, N. A. Touhami, and T. Elhamadi, "Genetic algorithm optimization for microstrip patch antenna miniaturization," Progress In Electromagnetics Research Letters, Vol. 60, 113-120, 2016.
doi:10.2528/PIERL16041907

22. Lim, S. P. and H. Haron, "Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions," 2013 IEEE Conference on Open Systems (ICOS), 41-46, Kuching, Malaysia, 2013, doi: 10.1109/icos.2013.6735045.

23. Liu, H., C.-Y. Yin, and W.-D. Gao, "Optimization and design of wideband antenna with adaptive differential evolution algorithm based on dual population," IEEE 2015 Asia-Pacific Microwave Conference (APMC), 1-3, Nanjing, China, 2015, doi: 10.1109/apmc.2015.7413230.