1. Southworth, G. C., Principles and Applications of Waveguide Transmission, 1950.
doi:10.1002/j.1538-7305.1950.tb02348.x
2. Lewin, L., Advanced Theory of Waveguides, Iliffe & Sons, 1951.
3. Reingold, I., J. L. Carter, and K. Garoff, "Single- and multi-iris resonant structures," Proc. IRE, Vol. 40, 861-865, 1952.
doi:10.1109/JRPROC.1952.273855 Google Scholar
4. Chen, T. S., "Waveguide resonant-iris filters with very wide passband and stopbands," Int. J. Electronics, Vol. 21, 401-424, 1966.
doi:10.1080/00207216608937922 Google Scholar
5. Chen, T. S., "Characteristics of waveguide resonant-iris filters," IEEE Trans. Microw. Theory Techn., Vol. 15, 260-262, 1967.
doi:10.1109/TMTT.1967.1126437 Google Scholar
6. Patzelt, H. and F. Arndt, "Double-plane steps in rectangular waveguides and their application for transformers, irises, and filters," IEEE Trans. Microw. Theory Techn., Vol. 30, 771-776, 1982.
doi:10.1109/TMTT.1982.1131135 Google Scholar
7. Bornemann, J. and R. Vahldieck, "Characterization of a class of waveguide discontinuities using a modified TExmn mode approach," IEEE Trans. Microw. Theory Techn., Vol. 38, 1816-1822, 1990.
doi:10.1109/22.64561 Google Scholar
8. Yang, R. and A. S. Omar, "Analysis of this inclined rectangular aperture with arbitrary location in rectangular waveguide," IEEE Trans. Microw. Theory Techn., Vol. 41, 1461-1463, 1993.
doi:10.1109/22.241690 Google Scholar
9. Beyer, R. and F. Arndt, "Efficient modal analysis of waveguide filters including the orthogonal mode coupling elements by an MM/FE method," IEEE Microw. Guided Wave Lett., Vol. 5, 9-11, 1995.
doi:10.1109/75.382376 Google Scholar
10. Kirilenko, A. A. and L. P. Mospan, "Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide," IEEE Trans. Microw. Theory Techn., Vol. 48, 1419-1421, 2000.
doi:10.1109/22.859492 Google Scholar
11. Leal-Sevillano, C. A., J. R. Montejo-Garai, J. A. Ruiz-Cruz, and J. M. Rebollar, "Wideband equivalent circuit for multi-aperture multi-resonant waveguide irises," IEEE Trans. Microw. Theory Techn., Vol. 64, 724-732, 2016.
doi:10.1109/TMTT.2016.2520462 Google Scholar
12. Tang, Y., L. Zhu, B. Li, Y. Bo, and L. Xu, "Broadband band-stop waveguide filters with T-shape diaphragm," Proc. Int. Conf. Microwave and Millimeter Wave Technology, Chengdu, China, 2018. Google Scholar
13. Rodríguez-Berral, R., F. Mesa, and F. Medina, "Resonant modes of a waveguide iris discontinuity: interpretation in terms of canonical circuits," IEEE Trans. Microw. Theory Techn., Vol. 66, 2059-2069, 2018.
doi:10.1109/TMTT.2018.2804914 Google Scholar
14. Bulashenko, A., S. Piltyay, Y. Kalinichenko, and O. Bulashenko, "Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers," Proc. IEEE 2nd Int. Conf. Advanced Trends in Information Theory, Kyiv, Ukraine, 2020. Google Scholar
15. Yi, D., M.-C. Tang, M. Li, Z.-H. Zhang, X.-C. Wei, and E.-P. Li, "Low-profile metasurface-based diaphragm for compartment shielding of microwave cavities," IEEE Trans. Microw. Theory Techn., Vol. 69, 2048-2059, 2021.
doi:10.1109/TMTT.2021.3057641 Google Scholar
16. Rozzi, T. E. and M. S. Navarro, "Propagation in a rectangular waveguide periodically loaded with resonant irises," Proc. IEEE-MTT-S Int. Microwave Symp., Cherry Hill, NJ, USA, 1976. Google Scholar
17. Cui, Z.-T. and S.-X. Li, "Design of microwave filter with resonant irises of resonant windows at different location," Proc. IEEE Int. Conf. Microwave Technology & Computational Electromagnetics, Beijing, China, 2011. Google Scholar
18. Arndt, F., R. Beyer, J. M. Reiter, T. Sieverding, and T. Wolf, "Automated design of waveguide components using hybrid mode-matching/numerical EM building-blocks in optimization-oriented CAD frameworks-state of the art and recent advances," IEEE Trans. Microw. Theory Techn., Vol. 45, 747-760, 1997.
doi:10.1109/22.575597 Google Scholar
19. Amari, S., J. Bornemann, and R. Vahldieck, "Fast and accurate analysis of waveguide filters by the coupled integral-equations technique," IEEE Trans. Microw. Theory Techn., Vol. 45, 1611-1618, 1997.
doi:10.1109/22.622929 Google Scholar
20. Peverini, O. A., R. Tascone, M. Baralis, G. Virone, D. Trinchero, and R. Orta, "Reduced-order optimized mode-matching cad of microwave waveguide components," IEEE Trans. Microw. Theory Techn., Vol. 52, 311-318, 2004.
doi:10.1109/TMTT.2003.820893 Google Scholar
21. Gong, L., K. Y. Chan, and R. Ramer, "A four-state iris waveguide bandpass filter with switchable irises," Proc. IEEE MTT-S Int. Microwave Symp., Honololu, HI, USA, 2017. Google Scholar
22. Chan, K. Y., R. Ramer, and R. R. Mansour, "A switchable iris bandpass filter using RF MEMS switchable planar resonators," IEEE Microwave Wireless Components Letters, Vol. 27, 34-36, 2017.
doi:10.1109/LMWC.2016.2629960 Google Scholar
23. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, and S. L. Berdnik, Analytical and Hybrid Methods in Theory of Slot-Hole Coupling of Electrodynamic Volumes, Springer Science + Business Media, 2008.
doi:10.1007/978-0-387-76362-0
24. Nesterenko, M. V., V. A. Katrich, and Yu. M. Penkin, "Diffraction of H10-wave by stepped rectangular waveguide coupling with impedance slot iris," Telecommun. and Radio Eng., Vol. 63, 569-588, 2005.
doi:10.1615/TelecomRadEng.v63.i7.10 Google Scholar
25. Warne, L. K., "Eddy current power dissipation at sharp corners: closely spaced rectangular conductors," Journal of Electromagnetic Waves and Applications, Vol. 9, 1441-1458, 1995.
doi:10.1163/156939395X00154 Google Scholar
26. Katrich, V. A., M. V. Nesterenko, and N. A. Khizhnyak, "Asymptotic solution of integral equation for magnetic current in slot radiators and coupling apertures," Telecommun. and Radio Eng., Vol. 63, 89-107, 2005.
doi:10.1615/TelecomRadEng.v63.i2.10 Google Scholar