Vol. 131
Latest Volume
All Volumes
2023-03-23
Scattering of Electromagnetic Waves by a Multi-Element System of Pass-through Resonators in a Rectangular Waveguide
By
Progress In Electromagnetics Research C, Vol. 131, 135-143, 2023
Abstract
The problem of electromagnetic waves diffraction by a system of pass-through resonators in a rectangular waveguide coupling by diaphragms with resonant slots was solved by the generalized method of induced magnetomotive forces (MMFs). A distinctive feature of the solution is characterized by using approximating functions defining magnetic currents in the slots obtained from solutions of current integral equations by the asymptotic averaging method. Multi-parameter studies of electrodynamic characteristics of such structures have been carried out. The comparison of numerical results with experimental data is presented.
Citation
Mikhail Nesterenko, Viktor A. Katrich, Svetlana V. Pshenichnaya, and Victor I. Kijko, "Scattering of Electromagnetic Waves by a Multi-Element System of Pass-through Resonators in a Rectangular Waveguide," Progress In Electromagnetics Research C, Vol. 131, 135-143, 2023.
doi:10.2528/PIERC23020903
References

1. Southworth, G. C., Principles and Applications of Waveguide Transmission, New York, 1950.
doi:10.1002/j.1538-7305.1950.tb02348.x

2. Lewin, L., Advanced Theory of Waveguides, Iliffe & Sons, London, 1951.

3. Reingold, I., J. L. Carter, and K. Garoff, "Single- and multi-iris resonant structures," Proc. IRE, Vol. 40, 861-865, 1952.
doi:10.1109/JRPROC.1952.273855

4. Chen, T. S., "Waveguide resonant-iris filters with very wide passband and stopbands," Int. J. Electronics, Vol. 21, 401-424, 1966.
doi:10.1080/00207216608937922

5. Chen, T. S., "Characteristics of waveguide resonant-iris filters," IEEE Trans. Microw. Theory Techn., Vol. 15, 260-262, 1967.
doi:10.1109/TMTT.1967.1126437

6. Patzelt, H. and F. Arndt, "Double-plane steps in rectangular waveguides and their application for transformers, irises, and filters," IEEE Trans. Microw. Theory Techn., Vol. 30, 771-776, 1982.
doi:10.1109/TMTT.1982.1131135

7. Bornemann, J. and R. Vahldieck, "Characterization of a class of waveguide discontinuities using a modified TExmn mode approach," IEEE Trans. Microw. Theory Techn., Vol. 38, 1816-1822, 1990.
doi:10.1109/22.64561

8. Yang, R. and A. S. Omar, "Analysis of this inclined rectangular aperture with arbitrary location in rectangular waveguide," IEEE Trans. Microw. Theory Techn., Vol. 41, 1461-1463, 1993.
doi:10.1109/22.241690

9. Beyer, R. and F. Arndt, "Efficient modal analysis of waveguide filters including the orthogonal mode coupling elements by an MM/FE method," IEEE Microw. Guided Wave Lett., Vol. 5, 9-11, 1995.
doi:10.1109/75.382376

10. Kirilenko, A. A. and L. P. Mospan, "Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide," IEEE Trans. Microw. Theory Techn., Vol. 48, 1419-1421, 2000.
doi:10.1109/22.859492

11. Leal-Sevillano, C. A., J. R. Montejo-Garai, J. A. Ruiz-Cruz, and J. M. Rebollar, "Wideband equivalent circuit for multi-aperture multi-resonant waveguide irises," IEEE Trans. Microw. Theory Techn., Vol. 64, 724-732, 2016.
doi:10.1109/TMTT.2016.2520462

12. Tang, Y., L. Zhu, B. Li, Y. Bo, and L. Xu, "Broadband band-stop waveguide filters with T-shape diaphragm," Proc. Int. Conf. Microwave and Millimeter Wave Technology, Chengdu, China, 2018.

13. Rodríguez-Berral, R., F. Mesa, and F. Medina, "Resonant modes of a waveguide iris discontinuity: interpretation in terms of canonical circuits," IEEE Trans. Microw. Theory Techn., Vol. 66, 2059-2069, 2018.
doi:10.1109/TMTT.2018.2804914

14. Bulashenko, A., S. Piltyay, Y. Kalinichenko, and O. Bulashenko, "Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers," Proc. IEEE 2nd Int. Conf. Advanced Trends in Information Theory, Kyiv, Ukraine, 2020.

15. Yi, D., M.-C. Tang, M. Li, Z.-H. Zhang, X.-C. Wei, and E.-P. Li, "Low-profile metasurface-based diaphragm for compartment shielding of microwave cavities," IEEE Trans. Microw. Theory Techn., Vol. 69, 2048-2059, 2021.
doi:10.1109/TMTT.2021.3057641

16. Rozzi, T. E. and M. S. Navarro, "Propagation in a rectangular waveguide periodically loaded with resonant irises," Proc. IEEE-MTT-S Int. Microwave Symp., Cherry Hill, NJ, USA, 1976.

17. Cui, Z.-T. and S.-X. Li, "Design of microwave filter with resonant irises of resonant windows at different location," Proc. IEEE Int. Conf. Microwave Technology & Computational Electromagnetics, Beijing, China, 2011.

18. Arndt, F., R. Beyer, J. M. Reiter, T. Sieverding, and T. Wolf, "Automated design of waveguide components using hybrid mode-matching/numerical EM building-blocks in optimization-oriented CAD frameworks-state of the art and recent advances," IEEE Trans. Microw. Theory Techn., Vol. 45, 747-760, 1997.
doi:10.1109/22.575597

19. Amari, S., J. Bornemann, and R. Vahldieck, "Fast and accurate analysis of waveguide filters by the coupled integral-equations technique," IEEE Trans. Microw. Theory Techn., Vol. 45, 1611-1618, 1997.
doi:10.1109/22.622929

20. Peverini, O. A., R. Tascone, M. Baralis, G. Virone, D. Trinchero, and R. Orta, "Reduced-order optimized mode-matching cad of microwave waveguide components," IEEE Trans. Microw. Theory Techn., Vol. 52, 311-318, 2004.
doi:10.1109/TMTT.2003.820893

21. Gong, L., K. Y. Chan, and R. Ramer, "A four-state iris waveguide bandpass filter with switchable irises," Proc. IEEE MTT-S Int. Microwave Symp., Honololu, HI, USA, 2017.

22. Chan, K. Y., R. Ramer, and R. R. Mansour, "A switchable iris bandpass filter using RF MEMS switchable planar resonators," IEEE Microwave Wireless Components Letters, Vol. 27, 34-36, 2017.
doi:10.1109/LMWC.2016.2629960

23. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, and S. L. Berdnik, Analytical and Hybrid Methods in Theory of Slot-Hole Coupling of Electrodynamic Volumes, Springer Science + Business Media, New York, 2008.
doi:10.1007/978-0-387-76362-0

24. Nesterenko, M. V., V. A. Katrich, and Yu. M. Penkin, "Diffraction of H10-wave by stepped rectangular waveguide coupling with impedance slot iris," Telecommun. and Radio Eng., Vol. 63, 569-588, 2005.
doi:10.1615/TelecomRadEng.v63.i7.10

25. Warne, L. K., "Eddy current power dissipation at sharp corners: closely spaced rectangular conductors," Journal of Electromagnetic Waves and Applications, Vol. 9, 1441-1458, 1995.
doi:10.1163/156939395X00154

26. Katrich, V. A., M. V. Nesterenko, and N. A. Khizhnyak, "Asymptotic solution of integral equation for magnetic current in slot radiators and coupling apertures," Telecommun. and Radio Eng., Vol. 63, 89-107, 2005.
doi:10.1615/TelecomRadEng.v63.i2.10