1. Liolis, K., A. Geurtz, R. Sperber, et al. "Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: The SaT5G approach," Int. J. Satell. Commun. Netw., Vol. 37, No. 2, 91-112, 2019.
doi:10.1002/sat.1245 Google Scholar
2. Arifin, J., "Study of CUBESAT systems for IoT," Proc. 12th Int. Renew. Eng. Conf. (IREC), 1-3, Apr. 2021. Google Scholar
3. Bassoli, R., F. Granelli, C. Sacchi, S. Bonafini, and F. H. Fitzek, "CubeSat based 5G cloud radion access networks: A novel paradigm for on-demand anytime/anywhere connectivity," IEEE Veh. Technol. Mag., Vol. 15, No. 2, 39-47, 2020.
doi:10.1109/MVT.2020.2979056 Google Scholar
4. Centenaro, M., C. E. Costa, F. Granelli, C. Sacchi, and L. Vangelista, "A survey on technologies, standards and open challenges in satellite IoT," IEEE Commun. Surveys Tuts., Vol. 23, No. 3, 1693-1720, 3rd Quart., 2021.
doi:10.1109/COMST.2021.3078433 Google Scholar
5. Padhi, P. K. and F. Charrua-Santos, "6G enabled industrial Internet of Everything: Towards a theoretical framework," Appl. Syst. Innov., Vol. 4, No. 1, 11, Feb. 2021.
doi:10.3390/asi4010011 Google Scholar
6. Ramahatla, K., M. Mosalaosi, A. Yahya, and B. Basutli, "Multiband reconfigurable antennas for 5G wireless and CubeSat applications: A review," IEEE Access, Vol. 10, 40910-40931, 2022.
doi:10.1109/ACCESS.2022.3166223 Google Scholar
7. Hu, P. F., K. W. Leung, Y. M. Pan, and S. Y. Zheng, "Electrically small, planar, horizontally polarized dual-band omnidirectional antenna and its application in a MIMO system," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 5345-5355, 2021, doi: 10.1109/TAP.2021.3061096.
doi:10.1109/TAP.2021.3061096 Google Scholar
8. Barman, B., D. Chatterjee, and A. N. Caruso, "Performance optimization of electrically small microstrip patch antennas on finite ground planes," 2020 IEEE Intern. Symp. on Ant. and Propag. and North American Radio Science Meeting, 1-2, 2020. Google Scholar
9. Chen, X., M.-C. Tang, D. Yi, and R. W. Ziolkowski, "An interdigitated structure-based, electrically small dipole antenna with enhanced bandwidth," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 355-356, 2020.
doi:10.1109/IEEECONF35879.2020.9329584 Google Scholar
10. Shameena, V. A., M. Manoj, M. Remsha, P. V. Anila, M. Sreejith Nair, and P. Mohanan, "Wideband electrically small monopole antenna," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-3, 2020. Google Scholar
11. Barman, B., K. C. Durbhakula, B. Bissen, D. Chatterjee, and A. N. Caruso, "Performance optimization of a microstrip patch antenna using characteristic mode and D/Q analysis," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-4, 2020. Google Scholar
12. Yu, Y.-H., Z.-Y. Zong, W. Wu, and D.-G. Fang, "Dielectric slab superstrate electrically small antennas with high gain and wide band," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 9, 1476-1480, Sept. 2020.
doi:10.1109/LAWP.2020.3005721 Google Scholar
13. Shubbar, M. and B. Rakos, "A self-adapting, pixelized planar antenna design for infrared frequencies," Sensors, Vol. 22, 3680, 2022, https://doi.org/10.3390/s22103680.
doi:10.3390/s22103680 Google Scholar
14. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Inc., 2001.
15. Ramesh, M. and K. B. Yip, "Design formula for inset fed microstrip patch antenna," Journal of Micro. and Opt., Vol. 3, No. 3, 5-10, Dec. 2003. Google Scholar
16. Saturday, J. C., K. M. Udofi, and A. B. Obot, "Compact rectangular slot patch antenna for dual frequency operation using inset feed technique," Intern. Journal of Information and Communication Sciences, Vol. 1, No. 3, 47-53, Jan. 2017. Google Scholar
17. "ANSYS electronics desktop package,", ANSYS v18, Ansoft Corporation. Google Scholar
18. Madany, Y. M., H. M. Elkamchouchi, and S. I. Abd-Elmonieum, "Frequency-tunable electrically small diversity patch antennas for cognitive radio applications," 2021 Inter. Telecommunications Conf. (ITC-Egypt), 1-6, 2021. Google Scholar
19. Khan, M. U., M. S. Sharawi, and R. Mittra, "Microstrip patch antenna miniaturization techniques: A review," IET Microwaves, Antennas & Propagation, Vol. 9, 913-922, 2015.
doi:10.1049/iet-map.2014.0602 Google Scholar
20. El Hachimi, Y., Y. Gmih, E. Makroum, and A. Farchi, "A miniaturized patch antenna designed and manufactured using slot's technique for RFID UHF mobile applications," International Journal of Electrical and Computer Engineering (IJECE), Vol. 8, No. 6, 5134-5143, Dec. 2018.
doi:10.11591/ijece.v8i6.pp5134-5143 Google Scholar
21. Nagabhushana, H. M., C. R. Byrareddy, N. Thangadurai, and S. U. Sharief, "Slotted and miniaturized patch antenna for WLAN and WiMAX applications," International Journal of Advanced Information Science and Technology (IJAIST), Vol. 6, No. 4, Apr. 2017. Google Scholar
22. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.
23. Borazjani, O., M. Nosrati, and M. Daneshmand, "A novel triple notch-bands ultra wide-band band-pass filters using parallel multi-mode resonators and CSRRs," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 24, No. 3, 375-381, 2014.
doi:10.1002/mmce.20770 Google Scholar
24. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2012.
25. Hayati, M. and M. Nosrati, "Loaded coupled transmission line approach of left-handed (LH) structures and realization of a highly compact dual-band branch-line coupler," Progress In Electromagnetics Research C, Vol. 10, 75-86, 2009.
doi:10.2528/PIERC09041508 Google Scholar
26. Rezaei, A. and L. Noori, "Microstrip hybrid coupler with a wide stop-band using symmetric structure for wireless applications," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 17, No. 1, Mar. 2018.
doi:10.1590/2179-10742018v17i11121 Google Scholar
27. Sarkar, S., A. D. Majumdar, S. Mondal, S. Biswas, D. Sarkar, and P. P. Sarkar, "Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane," Microwave Opt. Technol. Lett., Vol. 53, No. 1, 111-115, 2011.
doi:10.1002/mop.25661 Google Scholar
28. Sarkar, M. and S. K. Chowdhury, "A new compact microstrip patch antenna," Microwave Opt. Technol. Lett., Vol. 47, No. 4, 379-381, 2005.
doi:10.1002/mop.21174 Google Scholar
29. Prabhakar, H. V., U. K. Kummuri, R. M. Yadahalli, and V. Munnappa, "Effect of various meandering slots in rectangular microstrip antenna ground plane for compact broadband operation," Electron. Lett., Vol. 43, No. 16, 16-17, 2007.
doi:10.1049/el:20070688 Google Scholar
30. Lin, S.-Y. and K.-C. Huang, "A compact microstrip antenna for GPS and SCS application," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1227-1229, 2005.
doi:10.1109/TAP.2004.842597 Google Scholar
31. Kuo, J.-S. and K.-L. Wong, "A compact microstrip antenna with meandering slots in the ground plane," Microwave Opt. Technol. Lett., Vol. 29, No. 2, 95-97, 2001.
doi:10.1002/mop.1095 Google Scholar
32. Er-Rebyiy, R., J. Zbitou, A. Tajmouati, M. Latrach, A. Errkik, and L. El Abdellaoui, "A new design of a miniature microstrip patch antenna using defected ground structure DGS," 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 1-4, 2017. Google Scholar
33. Pandhare, R. A., P. L. Zade, and M. P. Abegaonkar, "Miniaturized microstrip antenna array using defected ground structure with enhanced performance," Engineering Science and Technology, An International Journal, Vol. 19, No. 3, 1360-1367, 2016.
doi:10.1016/j.jestch.2016.03.007 Google Scholar
34. Bhakhar, P., V. Dwivedi, and P. Prajapati, "Directivity enhancement of miniaturized directional coupler using defected ground structure," Proceedings of the International Conference on Communication and Signal Processing 2016 (ICCASP 2016), Advances in Intelligent Systems Research, Dec. 2016. Google Scholar
35. Bhakhar, P. and V. Dwivedi, "Symmetrical impedance microstrip coupled line coupler using fractal DGS for lower C-band applications," International Journal of Microwave and Optical Technology, Vol. 13, No. 2, 159-166, 2018. Google Scholar
36. Sanega, A. and P. Kumar, "A compact microstrip patch antenna for mobile communication applications," Micro-Electronics and Telecommunication Engineering, D. K. Sharma, V. E. Balas, L. H. Son, R. Sharma, K. Cengiz, Lecture Notes in Networks and Systems, Vol. 106, Springer, Singapore, 2020. Google Scholar
37. Roshani, S., S. I. Yahya, S. Roshani, and M. Rostami, "Design and fabrication of a compact branch-line coupler using resonators with wide harmonics suppression band," Electronics, MDPI, Vol. 11, 793, 2022.
doi:10.3390/electronics11050793 Google Scholar
38. Rani, R., P. Kaur, and N. Verma, "Metamaterials and their applications in patch antenna: A review," International Journal of Hybrid Information Technology, Vol. 8, No. 11, 199-212, 2015.
doi:10.14257/ijhit.2015.8.11.17 Google Scholar
39. Nelaturi, S. and N. P. Venkata, "A compact microstrip patch antenna based on metamaterials for Wi-Fi and WiMAX applications," Journal of Electromagnetic Engineering and Science, Vol. 18, No. 3, 182-187, Jul. 2018.
doi:10.26866/jees.2018.18.3.182 Google Scholar
40. Varamini, G., A. Keshtkar, and M. N. Moghadasi, "Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification," AEU Inter. Jour. of Electronics and Communications, Vol. 83, 213-221, 2018.
doi:10.1016/j.aeue.2017.08.057 Google Scholar
41. Li, R., G. Dejean, M. M. Tentzeris, and J. Laskar, "Development and analysis of a folded shorted-patch antenna with reduced size," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 555-562, 2004.
doi:10.1109/TAP.2004.823884 Google Scholar
42. Chiu, C. Y., C. H. Chan, and K. M. Luk, "Study of a small wide-band patch antenna with double shorting walls," IEEE Antennas Wireless Propag. Lett., Vol. 3, No. 1, 230-231, 2004.
doi:10.1109/LAWP.2004.836579 Google Scholar
43. Holub, A. and M. Polivka, "A novel microstrip patch antenna miniaturization technique: A meanderly folded shorted-patch antenna," 14th Conf. on Microwave Techniques, 1-4, Apr. 2008. Google Scholar
44. Luk, K., R. Chair, and K. Lee, "Small rectangular patch antenna," Electron. Lett., Vol. 34, No. 25, 2366, 1998.
doi:10.1049/el:19981643 Google Scholar
45. Moon, S.-M., H.-K. Ryu, J.-M. Woo, and H. Ling, "Miniaturization of λ/4 microstrip antenna using perturbation effect and plate loading for low-VHF-band applications," Electron. Lett., Vol. 47, No. 3, 162, 2011.
doi:10.1049/el.2010.3647 Google Scholar
46. Porath, R., "Theory of miniaturized shorting-post microstrip antennas," IEEE Trans. Antennas Propag., Vol. 48, No. 1, 41-47, 2000.
doi:10.1109/8.827384 Google Scholar
47. Mishra, A., P. Singh, N. P. Yadav, J. Ansari, and B. Vishvakarma, "Compact shorted microstrip patch antenna for dual-band operation," Progress In Electromagnetics Research C, Vol. 9, 171-182, 2009.
doi:10.2528/PIERC09071007 Google Scholar
48. Wang, S., H. W. Lai, K. K. So, and K. B. Ng, "Wideband shorted patch antenna with a modified half U-slot," IEEE Antennas Wireless Propag. Lett., Vol. 11, 689-692, 2012.
doi:10.1109/LAWP.2012.2204716 Google Scholar
49. Waterhouse, R., S. Targonski, and D. Kokotoff, "Design and performance of small printed antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1629-1633, 1998.
doi:10.1109/8.736612 Google Scholar
50. Souza, E. A. M., P. S. Oliveira, A. G. D'Assunção, L. M. Mendonça, and C. Peixeiro, "Miniaturization of a microstrip patch antenna with a koch fractal contour using a social spider algorithm to optimize shorting post position and inset feeding," Hindawi Publishing Corporation, International Journal of Antennas and Propagation, Vol. Article ID 6284830, 10 pages, 2019, 2019. Google Scholar
51. Rathod, S. M., R. N. Awale, and K. P. Ray, "Shorted circular microstrip antennas for 50 Ω microstrip line feed with very low cross polarization," Progress In Electromagnetics Research Letters, Vol. 74, 91-98, 2018.
doi:10.2528/PIERL18010935 Google Scholar
52. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1783-1786, 2016.
doi:10.1109/LAWP.2016.2536678 Google Scholar
53. Menga, F. and S. Sharma, "Single feed dual-band (2.4 GHz/5 GHz) miniaturized patch antenna for wireless local area network (WLAN) communications," Journal of Electromagnetic Waves and Applications, 2016. Google Scholar
54. Boukarkar, A., X. Q. Lin, Y. Jiang, and Y. Q. Yu, "Miniaturized single-feed multiband patch antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 850-854, Feb. 2017.
doi:10.1109/TAP.2016.2632620 Google Scholar
55. Ramzan, M. and K. Topalli, "A miniaturized patch antenna by using a CSRR loading plane," Hindawi Publishing Corporation, International Journal of Antennas and Propagation, Vol. 2015, Article ID 495629, 9 pages, 2015. Google Scholar
56. Painam, S. and C. Bhuma, "Miniaturizing a microstrip antenna using metamaterials and metasurfaces [Antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 61, No. 1, 91-135, Feb. 2019.
doi:10.1109/MAP.2018.2883018 Google Scholar
57. Chakraborty, S., M. Gangapadhyaya, B. Sinha, and M. Chakraborty, "Miniaturization of rectangular microstrip antenna at WiMAX band with slot in patch and ground surface," 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 1-5, Kolkata, India, 2018. Google Scholar
58. Dhakshinamoorthi, M. K., S. Gokulakkrizhna, M. Denesh Kumar, et al. "Rectangular microstrip patch antenna miniaturization using improvised genetic algorithm," 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI), 894-898, Tirunelveli, India, 2020. Google Scholar