1. Shi, J. and Q. Xue, "Balanced bandpass filters using center-loaded half wavelength resonators," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 4, 970-977, Apr. 2010.
doi:10.1109/TMTT.2010.2042839 Google Scholar
2. Feng, W., W. Che, and Q. Xue, "New balance-applications for dual-mode ring resonators in planar balanced circuits," IEEE Microw. Mag., Vol. 20, No. 7, 15-23, Jul. 2019.
doi:10.1109/MMM.2019.2909519 Google Scholar
3. Li, L., L.-S. Wu, J. Mao, M. Tang, and X.-W. Gu, "A balanced-to-balanced rat-race coupling network based on defected slots," IEEE Microwave Wireless Compon. Lett., Vol. 29, No. 7, 459-461, Jul. 2019.
doi:10.1109/LMWC.2019.2915951 Google Scholar
4. Shi, J., J. Ren, J. Dong, W. Feng, and Y. Yang, "Supercompact balanced wideband bandpass filter using capacitor-loaded three-line coupled structure," IEEE Microwave Wireless Compon. Lett., Vol. 32, No. 6, 499-502, Jun. 2022.
doi:10.1109/LMWC.2022.3141123 Google Scholar
5. Azizzadeh, A. and L. Mohammadi, "Degradation of BER by group delay in digital phase modulation," Fourth Advanced International Conference on Telecommunications, 350-354, Jun. 2008. Google Scholar
6. Myoung, S.-S., Y.-H. Kim, and J.-G. Yook, "Impact of group delay in RF BPF on impulse radio systems," IEEE MTT-S International Microwave Symposium, 1891-1894, Jun. 2005. Google Scholar
7. Gu, T., J. Chen, B. Ravelo, F. Wan, V. Mordachev, and Q. Ji, "Quad-band NGD investigation on crossed resonator interconnect structure," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 69, No. 12, 4789-4793, Dec. 2022. Google Scholar
8. Wan, F., et al., "Design and experimentation of inductorless low-pass NGD integrated circuit in 180-nm CMOS technology," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 41, No. 11, 4965-4974, Nov. 2022.
doi:10.1109/TCAD.2021.3136982 Google Scholar
9. Gu, T., F. Wan, J. Chen, B. Ravelo, and X. Zhao, "Compact and wideband flat negative group delay circuit investigation," IEEE Trans. Circuits Syst. II, Exp. Briefs, Early Access, 2023. Google Scholar
10. Chen, Z., J. Shi, and K. Xu, "Negative group delay power dividing network with balanced-to-single-ended topology," IET Microw. Antennas Propag., Vol. 13, No. 10, 1705-1710, Aug. 2019.
doi:10.1049/iet-map.2018.6092 Google Scholar
11. Zhu, Z., Z. Wang, S. Zhao, H. Liu, and S. Fang, "A novel balanced-to-unbalanced negative group delay power divider with good common-mode suppression," Int. J. RF Microw. Comput. Aided Eng., Vol. 32, No. 7, e23173, Jul. 2022. Google Scholar
12. Zhou, X., B. Li, N. Li, et al. "Analytical design of dual-band negative group delay circuit with multi-coupled lines," IEEE Access, Vol. 8, 72749-72756, 2020.
doi:10.1109/ACCESS.2020.2988096 Google Scholar
13. Wan, F., N. Li, B. Ravelo, N. M. Murad, and W. Rahajandraibe, "NGD analysis of turtle-shape microstrip circuit," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 67, No. 11, 2477-2481, Nov. 2020. Google Scholar
14. Wang, Z., Y. Bai, Y. Meng, S.-J. Fang, and H. Liu, "A compact negative group delay circuit topology based on asymmetric coplanar striplines and double-sided parallel striplines," Progress In Electromagnetics Research Letters, Vol. 98, 139-144, 2021.
doi:10.2528/PIERL21053003 Google Scholar
15. Zhu, Z., Z. Wang, Y. Meng, S. Fang, and H. Liu, "Balanced microstrip circuit with differential negative group delay characteristics," Cross Strait Radio Science and Wireless Technology Conference, 257-259, Oct. 2021. Google Scholar
16. Wang, Z., S. Zhao, H. Liu, and S. Fang, "A compact dual-band differential negative group delay circuit with wideband common mode suppression," IEEE J. Microw., Vol. 2, No. 4, 720-725, Oct. 2022.
doi:10.1109/JMW.2022.3192114 Google Scholar
17. Li, L., J. Mao, M. Tang, and H. Dai, "Mixed-mode property of defected ground structure and its application in balanced network design with harmonic suppression," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 3, 188-190, Mar. 2018.
doi:10.1109/LMWC.2018.2797523 Google Scholar
18. Mouris, B. A., A. Fernandez-Prieto, R. Thobaben, J. Martel, F. Mesa, and O. Quevedo-Teruel, "Glide symmetry to improve the bandgap operation of periodic microstrip defected ground structures," European Microwave Conference, 483-486, Jan. 2021. Google Scholar
19. Chaudhary, G., J. Jeong, P. Kim, Y. Jeong, and J. Lim, "Compact negative group delay circuit using defected ground structure," Asia-Pacific Microwave Conference, 22-24, Nov. 2013. Google Scholar
20. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 8, 521-523, Aug. 2014.
doi:10.1109/LMWC.2014.2322445 Google Scholar
21. Ji, Q., et al., "CSRR DGS-based bandpass negative group delay circuit design," IEEE Access, Vol. 11, 20309-20318, 2023.
doi:10.1109/ACCESS.2023.3249968 Google Scholar
22. Park, J., J. Kim, J. Lee, S. Kim, and S. Myung, "A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter," IEEE MTT-S International Microwave Symposium, 417-420, Jun. 2002. Google Scholar
23. Kandic, M. and G. E. Bridges, "Negative group delay prototype filter based on cascaded second order stages implemented with Sallen-Key topology," Progress In Electromagnetics Research B, Vol. 94, 1-18, 2021.
doi:10.2528/PIERB21071209 Google Scholar