Vol. 132
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-13
Differential Negative Group Delay Circuit Topology with Reverse Nested Double U-Shaped Defected Ground Structure
By
Progress In Electromagnetics Research C, Vol. 132, 65-77, 2023
Abstract
A simple and flexible differential negative group delay (NGD) circuit topology based on defected ground structure (DGS) is proposed. The circuit consists of microstrip lines and reverse nested double U-shaped (RNDU) DGSs, in which differential transmission and common-mode suppression (CMS) are realized by microstrip lines, and the adjustment of NGD time and the center frequency is achieved by changing the RNDU DGSs. Besides, the bandwidth and NGD time can be increased by cascading double couples of RNDU DGSs. For demonstration, two circuit prototypes with single- and double-couple DGSs are fabricated and measured. The measured results show that the NGD time of the single-couple DGS circuit at the center frequency of 2.279 GHz is -0.57 ns; the insertion loss is 2.08 dB; and the NGD bandwidth is 28 MHz. The NGD time of the double-couple DGS circuit at 2.30 GHz is -2.13 ns; the NGD bandwidth is 41 MHz; and the insertion loss is 4.39 dB. The functions of increasing bandwidth and enhancing NGD are realized. The common-mode insertion loss can reach 43.2 dB, and excellent CMS characteristics are achieved.
Citation
Zicheng Wang, Zhongbao Wang, Hongmei Liu, and Shao-Jun Fang, "Differential Negative Group Delay Circuit Topology with Reverse Nested Double U-Shaped Defected Ground Structure," Progress In Electromagnetics Research C, Vol. 132, 65-77, 2023.
doi:10.2528/PIERC23031202
References

1. Shi, J. and Q. Xue, "Balanced bandpass filters using center-loaded half wavelength resonators," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 4, 970-977, Apr. 2010.
doi:10.1109/TMTT.2010.2042839

2. Feng, W., W. Che, and Q. Xue, "New balance-applications for dual-mode ring resonators in planar balanced circuits," IEEE Microw. Mag., Vol. 20, No. 7, 15-23, Jul. 2019.
doi:10.1109/MMM.2019.2909519

3. Li, L., L.-S. Wu, J. Mao, M. Tang, and X.-W. Gu, "A balanced-to-balanced rat-race coupling network based on defected slots," IEEE Microwave Wireless Compon. Lett., Vol. 29, No. 7, 459-461, Jul. 2019.
doi:10.1109/LMWC.2019.2915951

4. Shi, J., J. Ren, J. Dong, W. Feng, and Y. Yang, "Supercompact balanced wideband bandpass filter using capacitor-loaded three-line coupled structure," IEEE Microwave Wireless Compon. Lett., Vol. 32, No. 6, 499-502, Jun. 2022.
doi:10.1109/LMWC.2022.3141123

5. Azizzadeh, A. and L. Mohammadi, "Degradation of BER by group delay in digital phase modulation," Fourth Advanced International Conference on Telecommunications, 350-354, Jun. 2008.

6. Myoung, S.-S., Y.-H. Kim, and J.-G. Yook, "Impact of group delay in RF BPF on impulse radio systems," IEEE MTT-S International Microwave Symposium, 1891-1894, Jun. 2005.

7. Gu, T., J. Chen, B. Ravelo, F. Wan, V. Mordachev, and Q. Ji, "Quad-band NGD investigation on crossed resonator interconnect structure," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 69, No. 12, 4789-4793, Dec. 2022.

8. Wan, F., et al., "Design and experimentation of inductorless low-pass NGD integrated circuit in 180-nm CMOS technology," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 41, No. 11, 4965-4974, Nov. 2022.
doi:10.1109/TCAD.2021.3136982

9. Gu, T., F. Wan, J. Chen, B. Ravelo, and X. Zhao, "Compact and wideband flat negative group delay circuit investigation," IEEE Trans. Circuits Syst. II, Exp. Briefs, Early Access, 2023.

10. Chen, Z., J. Shi, and K. Xu, "Negative group delay power dividing network with balanced-to-single-ended topology," IET Microw. Antennas Propag., Vol. 13, No. 10, 1705-1710, Aug. 2019.
doi:10.1049/iet-map.2018.6092

11. Zhu, Z., Z. Wang, S. Zhao, H. Liu, and S. Fang, "A novel balanced-to-unbalanced negative group delay power divider with good common-mode suppression," Int. J. RF Microw. Comput. Aided Eng., Vol. 32, No. 7, e23173, Jul. 2022.

12. Zhou, X., B. Li, N. Li, et al. "Analytical design of dual-band negative group delay circuit with multi-coupled lines," IEEE Access, Vol. 8, 72749-72756, 2020.
doi:10.1109/ACCESS.2020.2988096

13. Wan, F., N. Li, B. Ravelo, N. M. Murad, and W. Rahajandraibe, "NGD analysis of turtle-shape microstrip circuit," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 67, No. 11, 2477-2481, Nov. 2020.

14. Wang, Z., Y. Bai, Y. Meng, S.-J. Fang, and H. Liu, "A compact negative group delay circuit topology based on asymmetric coplanar striplines and double-sided parallel striplines," Progress In Electromagnetics Research Letters, Vol. 98, 139-144, 2021.
doi:10.2528/PIERL21053003

15. Zhu, Z., Z. Wang, Y. Meng, S. Fang, and H. Liu, "Balanced microstrip circuit with differential negative group delay characteristics," Cross Strait Radio Science and Wireless Technology Conference, 257-259, Oct. 2021.

16. Wang, Z., S. Zhao, H. Liu, and S. Fang, "A compact dual-band differential negative group delay circuit with wideband common mode suppression," IEEE J. Microw., Vol. 2, No. 4, 720-725, Oct. 2022.
doi:10.1109/JMW.2022.3192114

17. Li, L., J. Mao, M. Tang, and H. Dai, "Mixed-mode property of defected ground structure and its application in balanced network design with harmonic suppression," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 3, 188-190, Mar. 2018.
doi:10.1109/LMWC.2018.2797523

18. Mouris, B. A., A. Fernandez-Prieto, R. Thobaben, J. Martel, F. Mesa, and O. Quevedo-Teruel, "Glide symmetry to improve the bandgap operation of periodic microstrip defected ground structures," European Microwave Conference, 483-486, Jan. 2021.

19. Chaudhary, G., J. Jeong, P. Kim, Y. Jeong, and J. Lim, "Compact negative group delay circuit using defected ground structure," Asia-Pacific Microwave Conference, 22-24, Nov. 2013.

20. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 8, 521-523, Aug. 2014.
doi:10.1109/LMWC.2014.2322445

21. Ji, Q., et al., "CSRR DGS-based bandpass negative group delay circuit design," IEEE Access, Vol. 11, 20309-20318, 2023.
doi:10.1109/ACCESS.2023.3249968

22. Park, J., J. Kim, J. Lee, S. Kim, and S. Myung, "A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter," IEEE MTT-S International Microwave Symposium, 417-420, Jun. 2002.

23. Kandic, M. and G. E. Bridges, "Negative group delay prototype filter based on cascaded second order stages implemented with Sallen-Key topology," Progress In Electromagnetics Research B, Vol. 94, 1-18, 2021.
doi:10.2528/PIERB21071209