Vol. 135
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-30
Intelligent Sensor System with Transmission Coefficient in X-Band Frequency for Determining Sugar Content
By
Progress In Electromagnetics Research C, Vol. 135, 157-172, 2023
Abstract
This study describes a noncontact low-cost X-band sensor system for determining the soluble solid content (SSC) of a sugar solution. The system adopts a transmission signal technique with two frequency pairs (10.2 GHz paired with 10.4 GHz and 10.2 GHz paired with 10.6 GHz) from three transceiver modules. Each module has a microstrip patch antenna, mixer circuit, and dielectric resonator oscillator. To simplify the transmission power frequency of each frequency pair, the frequency is down-converted to an intermediate frequency (IF) signal using a frequency mixer. The IF signals are then compared using a gain and phase detector to find their magnitude ratio and phase difference. The measured SSC-level data are randomly divided into three datasets and input to an artificial neural network (ANN) for training. The training output is the SSC level in Brix degree. The proposed ANN structure comprises four input nodes, eight hidden nodes, and four output nodes, affording low complexity and resource savings while providing 92.98% accuracy. Therefore, the proposed low-cost sensor system can achieve precise decision-making and real-time measurement.
Citation
Pornpimon Chaisaeng, Thunyawat Limpiti, and Prapan Leekul, "Intelligent Sensor System with Transmission Coefficient in X-Band Frequency for Determining Sugar Content," Progress In Electromagnetics Research C, Vol. 135, 157-172, 2023.
doi:10.2528/PIERC23040404
References

1. Witek, K., K. Wydra, and M. Filip, "A high-sugar diet consumption, metabolism and health impacts with a focus on the development of substance use disorder: A narrative review," Nutrients, Vol. 14, 1-23, 2022.
doi:10.3390/nu14142940

2. WHO "Diabetes,", Apr. 2021, http://www.who.int/news-room/fact-sheets/detail/diabetes.
doi:10.3390/nu14010001

3. Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, J. E. Shaw, D. Bright, and R. Williams, "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition," Diabetes Research and Clinical Practice, Vol. 157, 1-10, 2019.
doi:10.1016/j.diabres.2019.107843

4. Erickson, J., B. Sadeghirad, L. Lytvyn, J. Slavin, and B. C. Johnston, "The scientific basis of guideline recommendations on sugar intake," Annals of Internal Medicine, Vol. 166, No. 4, 256-267, Feb. 2017.
doi:10.7326/M16-2020

5. Kumari, P. K., S. Akhila, Y S. Rao, and B. R. Devi, "Alternative to artificial preservatives," Systematic Reviews in Pharmacy, Vol. 10, No. 1, 99-102, 2019.

6. Allcott, H., B. B. Lockwood, and D. Taubinsky, "Should we tax sugar-sweetened beverages? an overview of theory and evidence," Journal of Economic Perspectives, Vol. 33, No. 3, 202-227, 2019.
doi:10.1257/jep.33.3.202

7. Pelle, F. D., A. Scroccarello, S. Scarano, and D. Compagnone, "Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices," Analytica Chimica Acta, Vol. 1051, No. 21, 129-137, Mar. 2019.
doi:10.1016/j.aca.2018.11.015

8. Donga, H., K. Xiaoa, Y. Xianb, and Y. Wub, "Authenticity determination of honeys with non-extractable proteins by means of elemental analyzer (EA) and liquid chromatography (LC) coupled to isotope ratio mass spectroscopy (IRMS)," Food Chemistry, Vol. 240, 717-724, Feb. 2018.
doi:10.1016/j.foodchem.2017.08.008

9. Jaywant, S. A., H. Singh, and K. M. Arif, "Sensors and instruments for brix measurement: A review," Sensors, Vol. 22, 1-20, 2022.
doi:10.1109/JSEN.2022.3215357

10. Menezes, N. M. C., D. A. Longhi, B. O. Ortiz, A. F. Junior, and G. M. F. de Aragao, "Modeling the inactivation of Aspergillus scheri and Paecilomycesniveus ascospores in apple juice by different ultraviolet light irradiances," International Journal of Food Microbiology, Vol. 333, Nov. 2020.

11. Balogun, M. A., O. A. Abiodun, F. L. Kolawole, R. M. O. Kayode, and O. E. Olushola, "Physicochemical and sensory properties of blends of pineapple-carrot wine," Journal of Microbiology Biotechnology Food Sciences, Vol. 7, No. 3, 306-311, 2017.
doi:10.15414/jmbfs.2017/18.7.3.306-311

12. Joshi, V. K., R. Sharma, V. Kumar, and D. Joshi, "Optimization of a process for preparation of base wine for cider vinegar production," Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 1007-1016, 2019.
doi:10.1007/s40011-018-1019-4

13. Zaukuu, J. Z., J. Soos, Z. Bodor, J. Felfoldi, I. Magyar, and Z. Kovacs, "Authentication of Tokaj wine (Hungaricum) with the electronic tongue and near infrared spectroscopy," Journal of Food Science, Vol. 84, No. 12, 3437-3444, 2019.
doi:10.1111/1750-3841.14956

14. Bahrami, M. E., M. Honarvar, K. Ansari, and B. Jamshidi, "Measurement of quality parameters of sugar beet juices using near-infrared spectroscopy and chemometrics," Journal of Food Engineering, Vol. 271, 1-7, 2020.

15. Kamboj, U., N. Kaushal, and S. Jabeen, "Near infrared spectroscopy as an efficient tool for the qualitative and quantitative determination of sugar adulteration inmilk," Journal of Physics: Conference Series, Vol. 1531, No. 012024, 1-8, Oct. 2020.

16. Thanavanich, C., N. Phuangsaijai, C. Thiraphatchotiphum, P. Theanjumpol, and S. Kittiwachana, "Instant quanti cation of sugars in milk tablets using near-infrared spectroscopy and chemometric tools," Scienti c Reports, Vol. 12, 1-9, 2022.

17. Belay, A. and G. Assefa, "Concentration, wavelength and temperature dependent refractive index of sugar solutions and methods of determination contents of sugar in soft drink beverages using laser lights," Journal of Lasers, Optics & Photonics, Vol. 5, No. 2, 1-5, Jul. 2018.

18. Tao, Y., B. Yan, N. Zhang, M. Wang, J. Zhao, H. Zhang, W. Chen, and D. Fan, "Microwave vacuum evaporation as a potential technology to concentrate sugar solutions: A study based on dielectric spectroscopy," Journal of Food Engineering, Vol. 294, 110414, 2021.
doi:10.1016/j.jfoodeng.2020.110414

19. Thomason, S. J. and K. S. Bialkowski, "Dielectric spectroscopy based determination of sugar content in Solution," IEEE Sensor Letter, Vol. 3, No. 5, 1-4, May 2019.
doi:10.1109/LSENS.2019.2910832

20. Ennasar, M. A., O. E. Mrabet, K. Mohamed, and M. Essaaidi, "Design and characterization of a broadband exible polyimide RFID tag sensor for NaCl and sugar detection," Progress In Electromagnetics Research C, Vol. 94, 273-283, 2019.
doi:10.2528/PIERC19052402

21. Hosseini, N. and M. Baghelani, "Selective real-time non-contact multi-variable water-alcohol-sugar concentration analysis during fermentation process using microwave split-ring resonator based sensor," Sensors and Actuators A, Vol. 325, No. 112695, 1-10, Jul. 2021.

22. Islam, M. T., Md. N. Rahman, M. S. J. Singh, and Md. Samsuzzaman, "Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based Sensor," IEEE Access, Vol. 6, 4118-4126, Jan. 2018.
doi:10.1109/ACCESS.2017.2787689

23. Rajendran, J., S. K. Menon, and M. Donelli, "A novel liquid adulteration sensor based on a self complementary antenna," Progress In Electromagnetics Research C, Vol. 103, 97-110, 2020.
doi:10.2528/PIERC20040802

24. Logeswaran, J. and R. B. Rani, "UWB antenna as a sensor for the analysis of dissolved particles and water quality," Progress In Electromagnetics Research Letters, Vol. 106, 31-39, 2022.
doi:10.2528/PIERL22062901

25. Banerjee, A., A. Kumar, N. K. Tiwari, and M. J. Akhtar, "Design of slotted microwave sensor for evaluation of water quality," 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 331-335, Bengaluru, India, 2022.

26. Zhao, C., G. Wu, and Y. Li, "Measurement of water content of oil-water two-phase ows using dual frequency microwave method in combination with deep neural network," Measurement, Vol. 131, 92-99, Jan. 2019.
doi:10.1016/j.measurement.2018.08.028

27. Kazemi, N., M. Abdolrazzaghi, P. Musilek, and M. Daneshmand, "A temperature-compensated high-resolution microwave sensor using artificial neural network," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 9, 1531-1309, 2020.
doi:10.1109/LMWC.2020.3012388

28. Zhang, J., D. Du, Y. Bao, J. Wang, and Z. Wei, "Development of multifrequency-swept microwave sensing system for moisture measurement of sweet corn with deep neural network," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 9, 6446-6454, Sep. 2020.
doi:10.1109/TIM.2020.2972655

29. Leekul, P., P. Wongsiritorn, and P. Chaisaeng, "Development of humidity monitoring system in greenhouse with electromagnetic X Band and artificial neural networks," Progress In Electromagnetics Research M, Vol. 100, 93-103, 2021.
doi:10.2528/PIERM20112202

30. Sumranbumrung, R., P. Khunkitti, A. Siritaratiwat, and A. Kruesubthaworn, "Characterization model of dielectric properties of cane sugar solution over 0.5-14 GHz," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-8, May 2021.
doi:10.1109/TIM.2021.3080381

31. Shiraga, K., T. Suzuki, N. Kondo, T. Tajima, M. Nakamura, H. Togo, A. Hirata, K. Ajito, and Y. Ogawa, "Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network," The Journal of Chemical Physics, Vol. 142, No. 234504, 1-13, 2015.

32. Turgul, V. and I. Kale, "Permittivity extraction of glucose solutions through arti cial neural networks non-invasive microwave glucose sensing," Sensors and Actuators A, Vol. 277, 65-72, 2018.
doi:10.1016/j.sna.2018.03.041

33. Leekul, P., B. Mgawe, T. Kazema, H. N. Dao, P. Sirisuk, and M. Krairiksh, "Dielectric constant determination using dual doppler modules," 2021 IEEE Conference on Antenna Measurements & Applications (CAMA), 269-270, 2021.
doi:10.1109/CAMA49227.2021.9703500

34. Leekul, P., B. Mgawe, T. Kazema, H. N. Dao, P. Sirisuk, and M. Krairiksh, "Simple and effective design concept for constructing In-Situ soil dielectric property sensor with dual low-cost COTS microwave modules," IEEE Access, Vol. 10, 54516-54524, 2022.
doi:10.1109/ACCESS.2022.3175845

35. Mishra, M., A. Rajput, P. K. Gupta, and B. Mukherjee, "Low profile, wideband, high gain CDRA with microstrip Feed for ISM and C band applications," Progress In Electromagnetics Research C, Vol. 126, 77-90, 2022.
doi:10.2528/PIERC22091402

36. Nguyen, V. T. and C. W. Jung, "Impact of dielectric constant on embedded antenna efficiency," International Journal of Antennas and Propagation, Vol. 758139, 1-6, 2014.
doi:10.1155/2014/758139

37. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Hoboken, NJ, 2012.

38. Leekul, P., T. Limpiti, and P. Chaisaeng, "An intelligent humidity control system for mushroom growing house by using beam-switching antennas with artificial neural networks," International Journal of Electrical and Computer Engineering (IJECE), Vol. 13, No. 1, 549-560, 2023.
doi:10.11591/ijece.v13i1.pp549-560