1. Witek, K., K. Wydra, and M. Filip, "A high-sugar diet consumption, metabolism and health impacts with a focus on the development of substance use disorder: A narrative review," Nutrients, Vol. 14, 1-23, 2022.
doi:10.3390/nu14142940 Google Scholar
2. WHO "Diabetes,", Apr. 2021, http://www.who.int/news-room/fact-sheets/detail/diabetes.
doi:10.3390/nu14010001 Google Scholar
3. Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, J. E. Shaw, D. Bright, and R. Williams, "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition," Diabetes Research and Clinical Practice, Vol. 157, 1-10, 2019.
doi:10.1016/j.diabres.2019.107843 Google Scholar
4. Erickson, J., B. Sadeghirad, L. Lytvyn, J. Slavin, and B. C. Johnston, "The scientific basis of guideline recommendations on sugar intake," Annals of Internal Medicine, Vol. 166, No. 4, 256-267, Feb. 2017.
doi:10.7326/M16-2020 Google Scholar
5. Kumari, P. K., S. Akhila, Y S. Rao, and B. R. Devi, "Alternative to artificial preservatives," Systematic Reviews in Pharmacy, Vol. 10, No. 1, 99-102, 2019. Google Scholar
6. Allcott, H., B. B. Lockwood, and D. Taubinsky, "Should we tax sugar-sweetened beverages? an overview of theory and evidence," Journal of Economic Perspectives, Vol. 33, No. 3, 202-227, 2019.
doi:10.1257/jep.33.3.202 Google Scholar
7. Pelle, F. D., A. Scroccarello, S. Scarano, and D. Compagnone, "Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices," Analytica Chimica Acta, Vol. 1051, No. 21, 129-137, Mar. 2019.
doi:10.1016/j.aca.2018.11.015 Google Scholar
8. Donga, H., K. Xiaoa, Y. Xianb, and Y. Wub, "Authenticity determination of honeys with non-extractable proteins by means of elemental analyzer (EA) and liquid chromatography (LC) coupled to isotope ratio mass spectroscopy (IRMS)," Food Chemistry, Vol. 240, 717-724, Feb. 2018.
doi:10.1016/j.foodchem.2017.08.008 Google Scholar
9. Jaywant, S. A., H. Singh, and K. M. Arif, "Sensors and instruments for brix measurement: A review," Sensors, Vol. 22, 1-20, 2022.
doi:10.1109/JSEN.2022.3215357 Google Scholar
10. Menezes, N. M. C., D. A. Longhi, B. O. Ortiz, A. F. Junior, and G. M. F. de Aragao, "Modeling the inactivation of Aspergillus scheri and Paecilomycesniveus ascospores in apple juice by different ultraviolet light irradiances," International Journal of Food Microbiology, Vol. 333, Nov. 2020. Google Scholar
11. Balogun, M. A., O. A. Abiodun, F. L. Kolawole, R. M. O. Kayode, and O. E. Olushola, "Physicochemical and sensory properties of blends of pineapple-carrot wine," Journal of Microbiology Biotechnology Food Sciences, Vol. 7, No. 3, 306-311, 2017.
doi:10.15414/jmbfs.2017/18.7.3.306-311 Google Scholar
12. Joshi, V. K., R. Sharma, V. Kumar, and D. Joshi, "Optimization of a process for preparation of base wine for cider vinegar production," Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 1007-1016, 2019.
doi:10.1007/s40011-018-1019-4 Google Scholar
13. Zaukuu, J. Z., J. Soos, Z. Bodor, J. Felfoldi, I. Magyar, and Z. Kovacs, "Authentication of Tokaj wine (Hungaricum) with the electronic tongue and near infrared spectroscopy," Journal of Food Science, Vol. 84, No. 12, 3437-3444, 2019.
doi:10.1111/1750-3841.14956 Google Scholar
14. Bahrami, M. E., M. Honarvar, K. Ansari, and B. Jamshidi, "Measurement of quality parameters of sugar beet juices using near-infrared spectroscopy and chemometrics," Journal of Food Engineering, Vol. 271, 1-7, 2020. Google Scholar
15. Kamboj, U., N. Kaushal, and S. Jabeen, "Near infrared spectroscopy as an efficient tool for the qualitative and quantitative determination of sugar adulteration inmilk," Journal of Physics: Conference Series, Vol. 1531, No. 012024, 1-8, Oct. 2020. Google Scholar
16. Thanavanich, C., N. Phuangsaijai, C. Thiraphatchotiphum, P. Theanjumpol, and S. Kittiwachana, "Instant quantication of sugars in milk tablets using near-infrared spectroscopy and chemometric tools," Scientic Reports, Vol. 12, 1-9, 2022. Google Scholar
17. Belay, A. and G. Assefa, "Concentration, wavelength and temperature dependent refractive index of sugar solutions and methods of determination contents of sugar in soft drink beverages using laser lights," Journal of Lasers, Optics & Photonics, Vol. 5, No. 2, 1-5, Jul. 2018. Google Scholar
18. Tao, Y., B. Yan, N. Zhang, M. Wang, J. Zhao, H. Zhang, W. Chen, and D. Fan, "Microwave vacuum evaporation as a potential technology to concentrate sugar solutions: A study based on dielectric spectroscopy," Journal of Food Engineering, Vol. 294, 110414, 2021.
doi:10.1016/j.jfoodeng.2020.110414 Google Scholar
19. Thomason, S. J. and K. S. Bialkowski, "Dielectric spectroscopy based determination of sugar content in Solution," IEEE Sensor Letter, Vol. 3, No. 5, 1-4, May 2019.
doi:10.1109/LSENS.2019.2910832 Google Scholar
20. Ennasar, M. A., O. E. Mrabet, K. Mohamed, and M. Essaaidi, "Design and characterization of a broadband exible polyimide RFID tag sensor for NaCl and sugar detection," Progress In Electromagnetics Research C, Vol. 94, 273-283, 2019.
doi:10.2528/PIERC19052402 Google Scholar
21. Hosseini, N. and M. Baghelani, "Selective real-time non-contact multi-variable water-alcohol-sugar concentration analysis during fermentation process using microwave split-ring resonator based sensor," Sensors and Actuators A, Vol. 325, No. 112695, 1-10, Jul. 2021. Google Scholar
22. Islam, M. T., Md. N. Rahman, M. S. J. Singh, and Md. Samsuzzaman, "Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based Sensor," IEEE Access, Vol. 6, 4118-4126, Jan. 2018.
doi:10.1109/ACCESS.2017.2787689 Google Scholar
23. Rajendran, J., S. K. Menon, and M. Donelli, "A novel liquid adulteration sensor based on a self complementary antenna," Progress In Electromagnetics Research C, Vol. 103, 97-110, 2020.
doi:10.2528/PIERC20040802 Google Scholar
24. Logeswaran, J. and R. B. Rani, "UWB antenna as a sensor for the analysis of dissolved particles and water quality," Progress In Electromagnetics Research Letters, Vol. 106, 31-39, 2022.
doi:10.2528/PIERL22062901 Google Scholar
25. Banerjee, A., A. Kumar, N. K. Tiwari, and M. J. Akhtar, "Design of slotted microwave sensor for evaluation of water quality," 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 331-335, Bengaluru, India, 2022. Google Scholar
26. Zhao, C., G. Wu, and Y. Li, "Measurement of water content of oil-water two-phase ows using dual frequency microwave method in combination with deep neural network," Measurement, Vol. 131, 92-99, Jan. 2019.
doi:10.1016/j.measurement.2018.08.028 Google Scholar
27. Kazemi, N., M. Abdolrazzaghi, P. Musilek, and M. Daneshmand, "A temperature-compensated high-resolution microwave sensor using artificial neural network," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 9, 1531-1309, 2020.
doi:10.1109/LMWC.2020.3012388 Google Scholar
28. Zhang, J., D. Du, Y. Bao, J. Wang, and Z. Wei, "Development of multifrequency-swept microwave sensing system for moisture measurement of sweet corn with deep neural network," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 9, 6446-6454, Sep. 2020.
doi:10.1109/TIM.2020.2972655 Google Scholar
29. Leekul, P., P. Wongsiritorn, and P. Chaisaeng, "Development of humidity monitoring system in greenhouse with electromagnetic X Band and artificial neural networks," Progress In Electromagnetics Research M, Vol. 100, 93-103, 2021.
doi:10.2528/PIERM20112202 Google Scholar
30. Sumranbumrung, R., P. Khunkitti, A. Siritaratiwat, and A. Kruesubthaworn, "Characterization model of dielectric properties of cane sugar solution over 0.5-14 GHz," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-8, May 2021.
doi:10.1109/TIM.2021.3080381 Google Scholar
31. Shiraga, K., T. Suzuki, N. Kondo, T. Tajima, M. Nakamura, H. Togo, A. Hirata, K. Ajito, and Y. Ogawa, "Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network," The Journal of Chemical Physics, Vol. 142, No. 234504, 1-13, 2015. Google Scholar
32. Turgul, V. and I. Kale, "Permittivity extraction of glucose solutions through articial neural networks non-invasive microwave glucose sensing," Sensors and Actuators A, Vol. 277, 65-72, 2018.
doi:10.1016/j.sna.2018.03.041 Google Scholar
33. Leekul, P., B. Mgawe, T. Kazema, H. N. Dao, P. Sirisuk, and M. Krairiksh, "Dielectric constant determination using dual doppler modules," 2021 IEEE Conference on Antenna Measurements & Applications (CAMA), 269-270, 2021.
doi:10.1109/CAMA49227.2021.9703500 Google Scholar
34. Leekul, P., B. Mgawe, T. Kazema, H. N. Dao, P. Sirisuk, and M. Krairiksh, "Simple and effective design concept for constructing In-Situ soil dielectric property sensor with dual low-cost COTS microwave modules," IEEE Access, Vol. 10, 54516-54524, 2022.
doi:10.1109/ACCESS.2022.3175845 Google Scholar
35. Mishra, M., A. Rajput, P. K. Gupta, and B. Mukherjee, "Low profile, wideband, high gain CDRA with microstrip Feed for ISM and C band applications," Progress In Electromagnetics Research C, Vol. 126, 77-90, 2022.
doi:10.2528/PIERC22091402 Google Scholar
36. Nguyen, V. T. and C. W. Jung, "Impact of dielectric constant on embedded antenna efficiency," International Journal of Antennas and Propagation, Vol. 758139, 1-6, 2014.
doi:10.1155/2014/758139 Google Scholar
37. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Hoboken, NJ, 2012.
38. Leekul, P., T. Limpiti, and P. Chaisaeng, "An intelligent humidity control system for mushroom growing house by using beam-switching antennas with artificial neural networks," International Journal of Electrical and Computer Engineering (IJECE), Vol. 13, No. 1, 549-560, 2023.
doi:10.11591/ijece.v13i1.pp549-560 Google Scholar