Vol. 136
Latest Volume
All Volumes
PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-09
High Isolation Compact Two Port 5G MIMO Diversity Antenna with Asymmetrical Feed and Partial Ground Structure
By
Progress In Electromagnetics Research C, Vol. 136, 23-36, 2023
Abstract
This paper presents a forthcoming compact high-performance two-element multiple-input-multiple-output (MIMO) diverse antenna for wireless-LAN 5 GHz band and sub-6 GHz 5G(NR) band. The proposed antenna consists of two symmetrical antenna elements with an inverted T-shaped ground structure. The antenna attributes such as S-parameters, realized gain, current distribution, and radiation patterns are studied. Additionally, MIMO performance is also investigated in terms of envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and multiplexing efficiency. The antenna covers the entire 5G band for wireless communication, with an effective band (-10-dB) of 2.92 to 5.72 GHz (provides bandwidth of 2.8 GHz). The obtained values indicate that measured performance is in reasonable agreement with simulated one. Additionally, efficiency and gain were around 95 % and above 3 dB across the band of interest respectively.
Citation
Sanket Nirmal, Sumit Kumar, and Richa Chandel, "High Isolation Compact Two Port 5G MIMO Diversity Antenna with Asymmetrical Feed and Partial Ground Structure," Progress In Electromagnetics Research C, Vol. 136, 23-36, 2023.
doi:10.2528/PIERC23042202
References

1. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020, doi: 10.1109/ACCESS.2020.3020952.
doi:10.1109/ACCESS.2020.3020952

2. Li, M., X. Chen, A. Zhang, and A. A. Kishk, "Dual-polarized broad-band base station antenna backed with dielectric cavity for 5G communications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 10, 2051-2055, Oct. 2019.
doi:10.1109/LAWP.2019.2937201

3. Zhai, G., Z. N. Chen, and X. Qing, "Mutual coupling reduction of a closely spaced four-element MIMO antenna system using discrete mushrooms," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 10, 3060-3067, 2016.
doi:10.1109/TMTT.2016.2604314

4. Nadeem, I. and D.-Y. Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2019, doi: 10.1109/ACCESS.2018.2885558.
doi:10.1109/ACCESS.2018.2885558

5. Zou, H., Y. Li, C. Y. D. Sim, and G. Yang, "Design of 8 x 8 dual-band MIMO antenna array for 5G smartphone applications," Int. J. RF Microw. Comput. Eng., Vol. 28, No. 9, 1-12, 2018, doi: 10.1002/mmce.21420.

6. Nandi, S. and A. Mohan, "A compact dual-band MIMO slot antenna for WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2457-2460, Jul. 2017, doi: 10.1109/LAWP.2017.2723927.

7. Liu, Y., Z. Yang, P. Chen, J. Xiao, and Q. Ye, "Isolation enhancement of a two-monopole MIMO antenna array with various parasitic elements for sub-6 GHz applications," Micromachines (Basel), Vol. 13, No. 12, Dec. 2022, doi: 10.3390/mi13122123.

8. Su, S., C. T. Lee, and Y. W. Hsiao, "Compact two-inverted-F-antenna system with highly integrated π-shaped decoupling structure," IEEE Trans. Antennas Propag., Vol. 67, No. 9, 618-6186, Sep. 2019, doi: 10.1109/TAP.2019.2925286.

9. Soltani, S., P. Lotfi, and R. D. Murch, "A dual-band multiport MIMO slot antenna for WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 529-532, 2017, doi: 10.1109/LAWP.2016.2587732.
doi:10.1109/LAWP.2016.2587732

10. Niu, Z., H. Zhang, Q. Chen, and T. Zhong, "Isolation enhancement in closely coupled dual-band MIMO patch antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 8, 1686-1690, Aug. 2019, doi: 10.1109/LAWP.2019.2928230.
doi:10.1109/LAWP.2019.2928230

11. Xu, Z., Q. Zhang, and L. Guo, "A compact 5G decoupling MIMO antenna based on split-ring resonators," Int. J. Antennas Propag., 1-10, 2019.

12. Ghannad, A. A., M. Khalily, P. Xiao, R. Tafazolli, and A. A. Kishk, "Enhanced matching and vialess decoupling of nearby patch antennas for MIMO system," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 6, 1066-1070, Jun. 2019, doi: 10.1109/LAWP.2019.2906308.
doi:10.1109/LAWP.2019.2906308

13. Sharma, K. and G. P. Pandey, "Two port compact MIMO antenna for ISM band applications," Progress In Electromagnetics Research C, Vol. 100, 173-185, 2020.
doi:10.2528/PIERC20011504

14. Liu, D. Q., H. J. Luo, M. Zhang, H. L. Wen, B. Wang, and J. Wang, "An extremely low-profile wideband MIMO antenna for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 5772-5780, 2019, https://doi.org/10.1109/TAP.2019.2908261.
doi:10.1109/TAP.2019.2908261

15. Jayant, S. and G. Srivastava, "Compact 4x4 proximity coupled microstrip fed UWB stepped slot MIMO antenna having triple band rejection," Wireless Pers Commun., Vol. 119, 3719-3734, 2021, https://doi.org/10.1007/s11277-021-08428-w.
doi:10.1007/s11277-021-08428-w

16. Khalid, M., S. I. Naqvi, N. Hussain, M. U. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics (Switzerland), Vol. 9, No. 1, 2020, https://doi.org/10.3390/electronics9010071.

17. Yue, T. W., Z. H. Jiang, and D. H. Werner, "A compact metasurface-enabled dual-band dual- circularly polarized antenna loaded with complementary split ring resonators," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 794-803, Feb. 2019.
doi:10.1109/TAP.2018.2882616

18. Saxena, G., P. Jain, and Y. K. Awasthi, "High diversity gain super-wideband single band-notch MIMO antenna for multiple wireless applications," IET Microw., Antennas Propag., Vol. 14, No. 1, 109-119, Jan. 2020, doi: 10.1049/iet-map.2019.0450.
doi:10.1049/iet-map.2019.0450

19. Tiwari, R. N., P. Singh, B. K. Kanaujia, and K. Srivastava, "Neutralization technique based two and four port high isolation MIMO antennas for UWB communication," AEU-International Journal of Electronics and Communications, Vol. 110, 152828, 2019, doi: 10.1016/j.aeue.2019.152828.

20. Nandi, S. and A. Mohan, "CRLH unit cell loaded triband compact MIMO antenna for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1816-1819, 2017, doi: 10.1109/LAWP.2017.2681178.

21. Sharma, A., G. Das, and R. K. Gangwar, "Design and analysis of tri-band dual-port dielectric resonator based hybrid antenna for WLAN/WiMAX applications," IET Microwaves, Antennas and Propagation, Vol. 12, No. 6, 986-992, May 2018, doi: 10.1049/iet-map.2017.0822.
doi:10.1049/iet-map.2017.0822

22. Gao, D., Z. Cao, X. Quan, M. Sun, S. Fu, and P. Chen, "A low-profile decoupling slot-strip array for 2 x 2 microstrip antenna," IEEE Access, Vol. 8, 113532-113542, 2020, doi: 10.1109/ACCESS.2020.3002862.
doi:10.1109/ACCESS.2020.3002862

23. Ibrahim, A. M., I. M. Ibrahim, and N. A. Shairi, "Compact MIMO slots antenna design with different bands and high isolation for 5G smartphone applications," Baghdad Sci. J., Vol. 16, No. 4, 1093-1102, 2019.

24. Zhang, S. and G. F. Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2019, https://doi.org/10.1109/LAWP.2015.2435992.

25. Chattha, H. T., "4-port 2-element MIMO antenna for 5G portable applications," IEEE Access, Vol. 7, 96516-96520, 2019, doi: 10.1109/ACCESS.2019.2925351.
doi:10.1109/ACCESS.2019.2925351

26. Karaboikis, M. P., V. C. Papamichael, G. F. Tsachtsiris, C. F. Soras, and V. T. Makios, "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Trans Antennas Propag., Vol. 56, No. 7, 2067-2078, 2008.
doi:10.1109/TAP.2008.924677