1. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas Propag. Mag., Vol. 54, 10-35, 2012.
doi:10.1109/MAP.2012.6230714 Google Scholar
2. Huang, X., X. Ma, X. Li, J. Fan, L. Guo, and H. Yang, "Simultaneous realization of polarization conversion for re ected and transmitted waves with bi-functional metasurface," Sci. Rep., Vol. 12, 2368, 2022.
doi:10.1038/s41598-022-06366-6 Google Scholar
3. Song, Z. Y., Q. Chu, X. Shen, and Q. Liu, "Wideband high-efficient linear polarization rotators," Front. Phys., Vol. 13, 137803, 2018.
doi:10.1007/s11467-018-0779-x Google Scholar
4. Huang, X., X. Ma, H. Gao, L. Guo, and X. Li, "Ultra-wideband linear-polarization conversion metasurface with high-efficient asymmetric transmission," Appl. Phys. A --- Mater. Sci. Process., Vol. 129, 278, 2023.
doi:10.1007/s00339-023-06541-0 Google Scholar
5. Li, N., J. Zhao, P. Tang, and Y. Cheng, "Design of all-metal three-dimensional anisotropic metamaterial for ultrabroadband terahertz reflective linear polarization convertor," Phys. Status Solidi, Vol. 2300104, 1-7, 2023. Google Scholar
6. Habashi, A., C. Ghobadi, and J. Nourinia, "A dual-broadband h-shaped metasurface for cross-polarization and asymmetric transmission with high stable incidence angle," AEU --- Int. J. Electron. Commun., Vol. 143, 154021, 2021.
doi:10.1016/j.aeue.2021.154021 Google Scholar
7. Wong, A. M. H. and G. Eleftheriades, "Perfect anomalous reflection with a bipartite huygens' metasurface," Phys. Rev. X, Vol. 8, 011036, 2018. Google Scholar
8. Feng, M., X. Tian, J. Wang, M. Yin, S. Qu, and D. Li, "Broadband abnormal reflection based on a metal-backed gradient index liquid slab: An alternative to metasurfaces," J. Phys. D: Appl. Phys., Vol. 48, 245501, 2015.
doi:10.1088/0022-3727/48/24/245501 Google Scholar
9. Nguyen, T. Q. H., T. K. T. Nguyen, T. Q. M. Nguyen, T. N. Cao, H. L. Phan, N. M. Luong, D. T. Le, X. K. Bui, C. L. Truong, and D. L. Vu, "Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications," Opt. Commun., Vol. 486, 126773, 2021.
doi:10.1016/j.optcom.2021.126773 Google Scholar
10. Ding, F., Y. Chen, and S. I. Bozhevolnyi, "Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting," Photonics Res., Vol. 8, 707-714, 2020.
doi:10.1364/PRJ.386655 Google Scholar
11. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas Wirel. Propag. Lett., Vol. 17, 1459-1463, 2018.
doi:10.1109/LAWP.2018.2849352 Google Scholar
12. Noishiki, T., R. Kuse, and T. Fukusako, "Wideband metasurface polarization converter with double-square-shaped patch elements," Progress In Electromagnetics Research C, Vol. 105, 47-58, 2020.
doi:10.2528/PIERC20031006 Google Scholar
13. Yu, J., Q.-R. Zheng, B. Zhang, H. Jiang, and K. Zou, "Multifunction cross polarization converter based on ultra-thin transmissive chiral metasurface in C and X bands," Progress In Electromagnetics Research M, Vol. 109, 205-216, 2022.
doi:10.2528/PIERM22021201 Google Scholar
14. Li, N., J. Zhao, P. Tang, and Y. Cheng, "Broadband and high-efficient reflective linear-circular polarization convertor based on three-dimensional all-metal anisotropic metamaterial at terahertz frequencies," Opt. Commun., Vol. 541, 129544, 2023.
doi:10.1016/j.optcom.2023.129544 Google Scholar
15. Ratni, B., A. De Lustrac, G. P. Piau, and S. N. Burokur, "Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface," Appl. Phys. Lett., Vol. 111, 214101, 2017.
doi:10.1063/1.4998556 Google Scholar
16. Fei, P., G. A. E. Vandenbosch, W. H. Guo, X. Wen, D. Xiong, W. Hu, Q. Zheng, and X. Chen, "Versatile cross-polarization conversion chiral metasurface for linear and circular polarizations," Adv. Opt. Mater., Vol. 8, 2000194, 2020.
doi:10.1002/adom.202000194 Google Scholar
17. Long, F., S. Yu, N. Kou, C. Zhang, Z. Ding, and Z. Zhang, "Wideband and high-efficiency planar chiral structure design for asymmetric transmission and linear polarization conversion," J. Appl. Phys., Vol. 127, 023104, 2020.
doi:10.1063/1.5129912 Google Scholar
18. Cheng, Y., D. Yang, and X. Li, "Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region," Phys. B Condens. Matter, Vol. 640, 414047, 2022.
doi:10.1016/j.physb.2022.414047 Google Scholar
19. Wang, X., J. Ding, B. Zheng, S. An, G. Zhai, and H. Zhang, "Simultaneous realization of anomalous reflection and transmission at two frequencies using Bi-functional metasurfaces," Sci. Rep., Vol. 8, 1876, 2018.
doi:10.1038/s41598-018-20315-2 Google Scholar
20. Xu, J., R. Li, J. Qin, S. Wang, and T. Han, "Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface," Opt. Express, Vol. 26, 20913-20919, 2018.
doi:10.1364/OE.26.020913 Google Scholar
21. Zhao, J., N. Li, and Y. Cheng, "All-dielectric inSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion," Opt. Commun., Vol. 536, 129372, 2023.
doi:10.1016/j.optcom.2023.129372 Google Scholar
22. Gao, J., Y. Zhang, Y. Sun, and Q. Wu, "Ultra-wide band and multifunctional polarization converter based on dielectric metamaterial," Materials (Basel), Vol. 12, 3857, 2019.
doi:10.3390/ma12233857 Google Scholar
23. Wu, Y., S. Huang, L. Deng, C. Tang, X. Gao, S. Fang, and L. Qiu, "Dual-band linear polarization converter based on multi-mode metasurface," Results Phys., Vol. 40, 105859, 2022.
doi:10.1016/j.rinp.2022.105859 Google Scholar
24. Ahmed, F., M. Khan, and F. Tahir, "A multifunctional polarization transforming metasurface for C-, X-, and K-Band applications," IEEE Antennas Wirel. Propag. Lett., Vol. 20, 2186-2190, 2021.
doi:10.1109/LAWP.2021.3065717 Google Scholar
25. Wu, L. W., H. Ma, R. Wu, Q. Xiao, Y. Gou, M. Wang, Z. Wang, L. Bao, H. Wang, M. Ye, and T. Cui, "Transmission-reflection controls and polarization controls of electromagnetic holograms by a reconfigurable anisotropic digital coding metasurface," Adv. Opt. Mater., Vol. 8, 2001065, 2020.
doi:10.1002/adom.202001065 Google Scholar
26. Lin, B. Q., J. Guo, P. Chu, W. Huo, Z. Xing, B. Huang, and L. Wu, "Multiple-band linear-polarization conversion and circular polarization in reflection mode using a symmetric anisotropic metasurface," Phys. Rev. Appl., Vol. 9, 24038, 2018.
doi:10.1103/PhysRevApplied.9.024038 Google Scholar
27. Su, J., Y. Guo, X. Chen, and W. Zhang, "A dual-wideband polarization-insensitive linear polarization converter based on metasurface," Progress In Electromagnetics Research M, Vol. 108, 213-222, 2022.
doi:10.2528/PIERM22012901 Google Scholar
28. Yuan, L., L. Hou, and Z. Zhang, "Triple-band highly efficient multi-polarization converter based on reflective metasurface," Progress In Electromagnetics Research M, Vol. 102, 127-135, 2021.
doi:10.2528/PIERM21032703 Google Scholar
29. Zhang, Z., X. Cao, J. Gao, and S. Li, "Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators," Radioengineering, Vol. 25, 436-441, 2016.
doi:10.13164/re.2016.0436 Google Scholar
30. Huang, X., H. Yang, D. Zhang, and Y. Luo, "Ultrathin dual-band metasurface polarization converter," IEEE Trans. Antennas Propag., Vol. 67, 4636-4640, 2019.
doi:10.1109/TAP.2019.2911377 Google Scholar