1. Santoro, S., A. H. Avci, A. Politano, and E. Curcio, "The advent of thermoplasmonic membrane distillation," Chemical Society Reviews, Vol. 51, 6087-6125, 2022.
doi:10.1039/D0CS00097C Google Scholar
2. Abramovich, S., D. Dutta, C. Rizza, S. Santoro, M. Aquino, A. Cupolillo, J. Occhiuzzi, M. F. L. Russa, B. Ghosh, D. Farias, A. Locatelli, D. W. Boukhvalov, A. Agarwal, E. Curcio, M. B. Sadan, and A. Politano, "NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation," Small, Vol. 18, No. 31, 2201473, 2022.
doi:10.1002/smll.202201473 Google Scholar
3. Elmaghraoui, D., A. Politano, and S. Jaziri, "Photothermal response of plasmonic nanofillers for membrane distillation," The Journal of Chemical Physics, Vol. 152, 114102, 2020.
doi:10.1063/1.5139291 Google Scholar
4. Politano, A., G. D. Profio, E. Fontananova, V. Sanna, A. Cupolillo, and E. Curcio, "Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes," Desalination, Vol. 451, No. 1, 192-199, 2019.
doi:10.1016/j.desal.2018.03.006 Google Scholar
5. Politano, A., P. Argurio, G. D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Advanced Materials, Vol. 29, No. 2, 1603504, 2016.
doi:10.1002/adma.201603504 Google Scholar
6. Santoro, S., M. Aquino, C. Rizza, J. Occhiuzzi, D. Mastrippolito, G. D'Olimpio, A. H. Avci, J. D. Santis, V. Paolucci, L. Ottaviano, L. Lozzi, A. Ronen, M. Bar-Sadan, D. S. Han, A. Politano, and E. Curcio, "Lithium recovery through WS2 nanofillers-promoted solar photothermal membrane crystallization of LiCl," Desalination, Vol. 546, No. 15, 116186, 2023.
doi:10.1016/j.desal.2022.116186 Google Scholar
7. Santoro, S., M. Aquino, C. Rizza, A. Cupolillo, D. W. Boukhvalov, G. D'Olimpio, S. Abramovich, A. Agarwal, M. B. Sadan, A. Politano, and E. Curcio, "Plasmonic nanofillers-enabled solar membrane crystallization for mineral recovery," Desalination, Vol. 563, No. 1, 116730, 2023.
doi:10.1016/j.desal.2023.116730 Google Scholar
8. Avci, A. H., S. Santoro, A. Politano, M. Propato, M. Micieli, M. Aquino, W. J. Zhang, and E. Curcio, "Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion," Chemical Engineering and Processing --- Process Intensification, Vol. 164, 108382, 2021.
doi:10.1016/j.cep.2021.108382 Google Scholar
9. Politano, A., A. Cupolillo, G. D. Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," Journal of Physics: Condensed Matter, Vol. 28, 363003, 2016.
doi:10.1088/0953-8984/28/36/363003 Google Scholar
10. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave," Scientific Reports, Vol. 6, 20474, 2016.
doi:10.1038/srep20474 Google Scholar
11. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901 Google Scholar
12. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 8938-8946, 2018.
doi:10.1039/C8NR01395K Google Scholar
13. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics and photonics with topological insulators," APL Mater, Vol. 5, 035504, 2017.
doi:10.1063/1.4977782 Google Scholar
14. Pogna, E. A. A., L. Viti, A. Politano, M. Brambilla, G. Scamarcio, M. S. Vitiello, and , "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nature Communications, Vol. 12, 6672, 2021.
doi:10.1038/s41467-021-26831-6 Google Scholar
15. Politano, A., V. Formoso, and G. Chiarello, "Annealing effects on the plasmonic excitations of metal/metal interfaces," Applied Surface Science, Vol. 255, No. 11, 6038-6042, 2009.
doi:10.1016/j.apsusc.2009.01.062 Google Scholar
16. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philosophical Magazine, Vol. 92, No. 6, 2012.
doi:10.1080/14786435.2011.634846 Google Scholar
17. Qiu, G. Y., Z. B. Gai, L. Saleh, J. K. Tang, T. Gui, G. A. K. Kullak-Ublic, and J. Wang, "Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2," ACS Nano, Vol. 15, 7536, 2021.
doi:10.1021/acsnano.1c00957 Google Scholar
18. Kang, H. K., W. Hong, Y. J. An, S. Yoo, H. J. Kwon, and Y. Nam, "Thermoplasmonic optical fiber for localized neural stimulation," ACS Nano, Vol. 14, 11406, 2020.
doi:10.1021/acsnano.0c03703 Google Scholar
19. Herzog, J. B., M. W. Knight, and D. Natelson, "Thermoplasmonics: Quantifying plasmonic heating in single nanowires," Nano Letters, Vol. 14, 499, 2020. Google Scholar
20. Baffou, G., R. Quidant, and C. Girard, "Thermoplasmonics modeling: A Green's function approach," Physical Review B, Vol. 82, 165424, 2010.
doi:10.1103/PhysRevB.82.165424 Google Scholar
21. Lee, J. H., B. C. Kim, B. K. Oh, and J. W. Choi, "Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1," Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 9, No. 7, 1018-1026, 2013.
doi:10.1016/j.nano.2013.03.005 Google Scholar
22. Rifat, A. A., R. Hasan, R. Ahmed, and H. Butt, "Photonic crystal fiber-based plasmonic biosensor with external sensing approach," Journal of Nanophotonics, Vol. 12, No. 1, 012503, 2018.
doi:10.1117/1.JNP.12.012503 Google Scholar
23. Maier, S. A., Plasmonics: Fundamentals and Applications, 1st Ed., Springer, 2007.
doi:10.1007/0-387-37825-1
24. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, 189, 2006.
doi:10.1126/science.1114849 Google Scholar
25. Hayashi, S. and T. Okamoto, "Plasmonics: Visit the past to know the future," Journal of Physics D: Applied Physics, Vol. 45, 10927, 2014. Google Scholar
26. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927, 2014.
doi:10.1039/C4NR03143A Google Scholar
27. Politano, A., G. Chiarello, and C. Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Materials Science in Semiconductor Processing, Vol. 65, 88, 2017.
doi:10.1016/j.mssp.2016.05.002 Google Scholar
28. Han, H. X., D. L. Hou, L. Zhao, N. N. Luan, L. Song, Z. H. Liu, Y. D. Lian, J. F. Liu, and Y. S. Hu, "Large detection-range plasmonic sensor based on an H-shaped photonic crystal fiber," Sensors, Vol. 20, No. 4, 1009, 2020.
doi:10.3390/s20041009 Google Scholar
29. Jorgenson, R. C. and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical, Vol. 12, No. 3, 213-220, 1993.
doi:10.1016/0925-4005(93)80021-3 Google Scholar
30. Li, H. P., J. Ruan, X. Li, G. Y. Wei, and T. He, "High-sensitivity temperature sensor based on surface plasmon resonance photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 116, 11-21, 2023. Google Scholar
31. Mei, C., Y. Wu, S. Qiu, J. H. Yuan, X. Zhou, and K. P. Long, "Design of dual-core photonic crystal fiber for temperature sensor based on surface plasmon resonance effect," Optics Communications, Vol. 508, 127838, 2022.
doi:10.1016/j.optcom.2021.127838 Google Scholar
32. Ahmed, T., F. Haider, R. A. Aoni, and R. Ahmed, "Highly sensitive U-shaped micro-channel photonic crystal fiber-based plasmonic biosensor," Plasmonics, Vol. 16, No. 6, 2215-2223, 2021.
doi:10.1007/s11468-021-01477-8 Google Scholar
33. Chen, X., L. Xia, and C. Li, "Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection," IEEE Photonics Journal, Vol. 10, No. 1, 1-9, 2018. Google Scholar
34. Yan, X., R. Fu, T. L. Cheng, and S. G. Li, "A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range," Sensors, Vol. 21, No. 11, 3782, 2021.
doi:10.3390/s21113782 Google Scholar
35. Yang, H., M. Wang, G. Y. Wang, and J. Q. Yao, "Highly sensitive refractive index sensor based on SPR with silver and titanium dioxide coating," Optical and Quantum Electronics, Vol. 53, No. 6, 341, 2021.
doi:10.1007/s11082-021-02981-1 Google Scholar
36. Zhang, S., J. Li, S. Li, Q. Liu, J. Wu, and Y. Guo, "Surface plasmon resonance sensor based on D-shaped photonic crystal fiber with two micro-openings," Journal of Physics D: Applied Physics, Vol. 51, No. 30, 305104, 2018.
doi:10.1088/1361-6463/aace72 Google Scholar
37. An, G. W., S. G. Li, X. Yan, X. N. Zhang, Z. Y. Yuan, H. Y. Wang, Y. N. Zhang, X. P. Hao, Y. N. Shao, and Z. C. Han, "Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance," Plasmonics, Vol. 12, 465-471, 2017.
doi:10.1007/s11468-016-0286-2 Google Scholar
38. Yang, Z., L. Xia, C. Li, X. Chen, and D. M. Liu, "A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection," Optics Communications, Vol. 430, 195-203, 2019.
doi:10.1016/j.optcom.2018.08.049 Google Scholar
39. Wang, S. T., Y. H. Lu, W. B. Ma, N. Liu, and S. H. Fan, "D-shaped surface plasmon photonic crystal fiber temperature sensor," Plasmonics, Vol. 17, No. 5, 1911-1919, 2022.
doi:10.1007/s11468-022-01683-y Google Scholar
40. Pan, H. G., F. Pan, A. L. Zhang, C. B. Cao, and F. J. Xue, "Wide refractive index detection range surface plasmon resonance sensor based on D-shaped photonic crystal fiber," Optical and Quantum Electronics, Vol. 54, No. 6, 393, 2022.
doi:10.1007/s11082-022-03805-6 Google Scholar
41. Zhang, Y., Z. Yi, Y. Shi, C. Liu, X. L. Li, J. W. Lv, L. Yang, and P. K. Chu, "Photonic fibre crystal sensor with a D-shape based on surface plasma resonance containing microfluidic channels for detection of a wide range of refractive indexes," Journal of Modern Optics, Vol. 69, No. 1, 1-11, 2022.
doi:10.1080/09500340.2021.1989068 Google Scholar
42. Zhang, Z. C., J. H. Yuan, S. Qiu, G. Y. Zhou, X. Zhou, B. B. Yan, Q. Wu, K. R. Wang, and X. Z. Sang, "Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect," Chinese Physics B, Vol. 32, 034208, 2023.
doi:10.1088/1674-1056/ac785e Google Scholar