1. Gu, Y., T. Zhang, H. Chen, et al. "Mini review on flexible and wearable electronics for monitoring human health information," Nanoscale Res. Lett., Vol. 14, 263, 2019.
doi:10.1186/s11671-019-3084-x Google Scholar
2. Seshadri, D. R., J. R. Rowbottom, C. Drummond, J. E. Voos, and J. Craker, "A review of wearable technology: Moving beyond the hype: From need through sensor implementation," 2016 8th Cairo International Biomedical Engineering Conference (CIBEC), 52-55, 2016.
doi:10.1109/CIBEC.2016.7836118 Google Scholar
3. Ates, H. C., P. Q. Nguyen, L. Gonzalez-Macia, et al. "End-to-end design of wearable sensors," Nat. Rev. Mater., Vol. 7, 887-907, 2022.
doi:10.1038/s41578-022-00460-x Google Scholar
4. Vijayan, V., J. P. Connolly, J. Condell, N. McKelvey, and P. Gardiner, "Review of wearable devices and data collection considerations for connected health," Sensors (Basel), Vol. 21, No. 6, 5589, 2021.
doi:10.3390/s21165589 Google Scholar
5. Iqbal, S. M. A., I. Mahgoub, E. Du, et al. "Advances in healthcare wearable devices," NPJ Flex Electron, Vol. 5, 9, 2021.
doi:10.1038/s41528-021-00107-x Google Scholar
6., https://iot-analytics.com/number-connected-iot-devices/.
7. Monti, G., L. Corchia, and L. Tarricone, "UHF wearable rectenna on textile materials," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3869-3873, Jul. 2013.
doi:10.1109/TAP.2013.2254693 Google Scholar
8. Estrada, J., E. Kwiatkowski, A. Lopez-Yela, M. Borgonos-Garcia, D. Segovia, T. Barton, and Z. Popovic, "An octave bandwidth RF harvesting tee-shirt," 2019 IEEE Wireless Power Transfer Conference (WPTC), 1-4, Jun. 2019. Google Scholar
9. Eid, A., J. G. Hester, and M. M. Tentzeris, "5G as a wireless power grid," Sci. Rep., Vol. 11, No. 1, 1-9, 2021.
doi:10.1038/s41598-020-79500-x Google Scholar
10. Vital, D., S. Bhardwaj, and J. L. Volakis, "Textile-based large area RF-power harvesting system for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2323-2331, Mar. 2020.
doi:10.1109/TAP.2019.2948521 Google Scholar
11. Wagih, M., N. Hillier, S. Yong, A. S. Weddell, and S. Beeby, "RF-powered wearable energy harvesting and storage module based on E-textile coplanar waveguide rectenna and supercapacitor," IEEE Open Journal of Antennas and Propagation, Vol. 2, 302-314, 2021.
doi:10.1109/OJAP.2021.3059501 Google Scholar
12. Wagih, M., A. S. Weddell, and S. Beeby, "Omnidirectional dual polarized low-profile textile rectenna with over 50% efficiency for sub-μW/cm2 wearable power harvesting," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2522-2536, 2020.
doi:10.1109/TAP.2020.3030992 Google Scholar
13. Eid, A., J. Hester, A. Nauroze, et al. "A flexible compact rectenna for 2.40 Hz ISM energy harvesting applications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1887-1888, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608525 Google Scholar
14. Chandravanshi, S., K. K. Katare, and M. J. Akhtar, "A flexible dual-band rectenna with full azimuth coverage," IEEE Access, Vol. 9, 27476-27484, 2021.
doi:10.1109/ACCESS.2021.3058239 Google Scholar
15. Malik, B. T., V. Doychinov, S. A. Raza Zaidi, et al. "Flexible rectennas for wireless power transfer to wearable sensors at 24 GHz," 2019 Research, Invention, and Innovation Congress (RI2C), 1-5, Bangkok, Thailand, 2019, doi: 10.1109/RI2C48728.2019.89999. Google Scholar
16. Zhang, X., J. Grajal, J. L. Vazquez-Roy, et al. "Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting," Nature, Vol. 566, 368-372, 2019.
doi:10.1038/s41586-019-0892-1 Google Scholar
17., Dupont Kapton FN, Available online: https://www.dupont.com/content/dam/Dupont2.0/Products/Electronics-and-imaging/Literature/DEC-Kapton-FN-datasheet.pdf, [(accessed on Jul. 3 2019)].
18. You, K. Y., H. K. Mun, J. Salleh, and Z. Abbas, "A small and slim coaxial probe for single rice grain moisture sensing," Sensors, Vol. 13, 2652-3663, 2013. Google Scholar
19. Lopez-Rodriguez, P., D. Escot-Bocanegra, D. Poyatos-Martinez, and F. Weinmann, "Comparison of metal-backed free-space and open-ended coaxial probe techniques for the dielectric characterization of aeronautical composites," Sensors, Vol. 16, 967, 2016.
doi:10.3390/s16070967 Google Scholar
20. El Khamlichi, M., A. Alvarez Melcon, O. El Mrabet, M. A. Ennasar, and J. Hinojosa, "Flexible UHF RFID tag for blood tubes monitoring," Sensors (Basel), Vol. 19, No. 22, 4903, Nov. 9, 2019, PMID: 31717601; PMCID: PMC6891293.
doi:10.3390/s19224903 Google Scholar
21., https://eu.mouser.com/datasheet/2/472/skyworks surface mount schottky diodes 200041w-1213983.pdf.
22. Bajtaoui, M., O. El Mrabet, M. A. Ennasar, and M. Khalladi, "A novel circular polarized rectenna with wide ranges of loads for wireless harvesting energy," Progress In Electromagnetics Research M, Vol. 106, 35-46, 2021.
doi:10.2528/PIERM21092107 Google Scholar
23. Zeng, M., A. S. Andrenko, X. Liu, B. Zhu, Z. Li, and H.-Z. Tan, "Differential topology rectifier design for ambient wireless energy harvesting," 2016 IEEE International Conference on RFID Technology and Applications (RFID-TA), 97-101, Foshan, 2016. Google Scholar
24., CST Microwave Studio, 2020, [online] Available: www.cst.com.
25. Zhang, F., H. Nam, and J.-C. Lee, "A novel compact folded dipole architecture for 2.45 GHz rectenna application," 2009 Asia Pacic Microwave Conference, 2766-2769, Singapore, 2009. Google Scholar
26. Collado, A. and A. Georgiadis, "Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 60, No. 8, 2225-2234, Aug. 2013.
doi:10.1109/TCSI.2013.2239154 Google Scholar
27. Palazzi, V., C. Kalialakis, F. Alimenti, et al. "Performance analysis of a ultra-compact low-power rectenna in paper substrate for RF energy harvesting," Proc. IEEE Topical Conf. Wireless Sensors Sensor Netw. (WiSNet), 65-68, Jan. 2017. Google Scholar
28. Kumar, D. and K. Chaudhary, "Design of differential source fed circularly polarized rectenna with embedded slots for harmonics suppression," Progress In Electromagnetics Research C, Vol. 84, 175-187, 2018.
doi:10.2528/PIERC18021401 Google Scholar