1. Parthiban, P., "Embeddable miniature UHF RFID near-field antenna for healthcare applications," Progress In Electromagnetics Research M, Vol. 87, 199-207, 2019.
doi:10.2528/PIERM19091111 Google Scholar
2. Raihani, H., A. Benbassou, M. El Ghzaoui, and J. Belkadid, "Performance evaluation of a passive UHF RFID tag antenna using the embedded T-match structure,", May 2017, doi: 10.1109/WITS.2017.7934636. Google Scholar
3. Garcia Oya, J. R., R. Martin Clemente, E. Hidalgo Fort, R. Gonzalez Carvajal, and F. Munoz Chavero, "Design of an U shaped slotted patch antenna for RFID vehicle identificaronments," Sensors 2018, Vol. 18, No. 7, 2385, Jul. 2018. Google Scholar
5. Chowdary Polavarapu, S., U. Kunduru, and H. Nallamala, "RFID based automatic tollgate collection," Int. J. Eng. Technol., Vol. 7, No. 2, 1-5, 2018.
doi:10.14419/ijet.v7i2.1.9871 Google Scholar
6. Van Hoang, T. Q., D. H. N. Bui, T. P. Nguyen, T. P. Vuong, and C. Defay, "Passive battery-free UHF RFID tag for athermic car windshields," 2017 IEEE Antennas and Propagation Society International Symposium, Proceedings, Vol. 2017-January, 643-644, Oct. 2017. Google Scholar
7. Agarwal, V., S. Sharma, and P. Agarwal, "IOT based smart transport management and vehicle-to-vehicle communication system," Comput. Networks, Big Data IoT 2021, Vol. 66, 709-716, 2021. Google Scholar
8. Gowri, S., J. S. Vimali, D. U. Karthik, and G. A. John Jeffrey, "Real time traffic signal and speed violation control system of vehicles using IOT," Lect. Notes Data Eng. Commun. Technol., Vol. 49, 953-958, 2020.
doi:10.1007/978-3-030-43192-1_105 Google Scholar
9. Atta, A., S. Abbas, M. A. Khan, G. Ahmed, and U. Farooq, "An adaptive approach: Smart traffic congestion control system," J. King Saud Univ. --- Comput. Inf. Sci., Vol. 32, No. 9, 1012-1019, Nov. 2020. Google Scholar
10. Al-abassi, S. A. W., K. Y. A. Al-bayati, M. R. R. Sharba, and L. Abogneem, "Smart prepaid traffic fines system using RFID, IoT and mobile app," TELKOMNIKA Telecommunication Comput. Electron. Control., Vol. 17, No. 4, 1828-1837, Aug. 2019.
doi:10.12928/telkomnika.v17i4.10771 Google Scholar
11. Naik, T., R. Roopalakshmi, N. Divya Ravi, P. Jain, B. H. Sowmya, and Manichandra, "RFID-based smart traffic control framework for emergency vehicles," Proc. Int. Conf. Inven. Commun. Comput. Technol., ICICCT 2018, 398-401, Sep. 2018. Google Scholar
12. Vishnevsky, V. M., A. Larionov, and R. Ivanov, "Architecture of application platform for RFID-enabled traffic law enforcement system," 2014 7th International Workshop on Communication Technologies for Vehicles, Nets4Cars-Fall 2014, 45-49, Dec. 2014. Google Scholar
13. Hoffman, A. J. and A. J. Pretorius, "SmartRoad: A New Approach to Law Enforcement in Dense Traffic Environments," IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, Vol. 2015-October, 598-605, Oct. 2015. Google Scholar
14. Vishnevsky, V. M. and A. Larionov, "Design concepts of an application platform for traffic law enforcement and vehicles registration comprising RFID technology," 2012 IEEE International Conference on RFID-Technologies and Applications, RFID-TA 2012, 148-153, 2012.
doi:10.1109/RFID-TA.2012.6404501 Google Scholar
15. Grosinger, J., W. Pachler, and W. Bosch, "Tag size matters: Miniaturized RFID tags to connect smart objects to the internet," IEEE Microw. Mag., Vol. 19, No. 6, 101-111, Sep. 2018.
doi:10.1109/MMM.2018.2844029 Google Scholar
16. Chung, Y. and T. H. Berhe, "Long-range UHF RFID tag for automotive license plate," Sensors 2021, Vol. 21, No. 7, 2521, Apr. 2021. Google Scholar
17. "Impinj Monza 4 RAIN RFID Tag Chips --- IMPINJ,", https://www.impinj.com/products/tag-chips/impinj-monza-4-series (accessed May 01, 2023). Google Scholar
18. "IC-Alien Technology,", https://www.alientechnology.com/products/ic/ (accessed May 01, 2023). Google Scholar
19. Nguyen, V. H., A. Diallo, P. Le Thuc, R. Staraj, S. Lanteri, and G. F. Carle, "A miniature implanted antenna for UHF RFID applications," Progress In Electromagnetics Research C, Vol. 99, 221-238, 2020.
doi:10.2528/PIERC19102905 Google Scholar
20. Shaikh, K. M., K. J. Karande, and S. V. Surwase, "Nested slot suspended patch antenna using CST microwave studio,", Nov. 2018, doi: 10.1109/ICICET.2018.8533805. Google Scholar
21. Choudhary, A., K. Gopal, D. Sood, and C. C. Tripathi, "Development of compact inductive coupled meander line RFID tag for near-field applications," Int. J. Microw. Wirel. Technol., Vol. 9, No. 4, 757-764, May 2017.
doi:10.1017/S1759078716000751 Google Scholar
22. "RFID inlay/label/tag factory/Farsens Rocky100,", https://www.richrd.com/epc-c1g2-batteryless-pressure-sensor.html (accessed June 23, 2023).
doi:10.1017/S1759078716000751 Google Scholar
23. Kumar, M., A. Sharma, and I. J. G. Zuazola, "All-in-One UHF RFID tag antenna for retail garments using nonuniform meandered lines," Progress In Electromagnetics Research Letters, Vol. 94, 133-139, 2020.
doi:10.2528/PIERL20072102 Google Scholar
24. Jalal, A. S. A. and A. Ismail, "A compact fractal-based asymmetrical dipole antenna for RFID tag applications," 2018 3rd Scientic Conference of Electrical Engineering, SCEE 2018, 101-104, Jul. 2018. Google Scholar
25. Moh, C. W., E. H. Lim, F. L. Bong, and B. K. Chung, "Miniature coplanar-fed folded patch for metal mountable UHF RFID tag," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2245-2253, May 2018.
doi:10.1109/TAP.2018.2811784 Google Scholar
26. Michel, A., P. Nepa, X. Qing, and Z. N. Chen, "Considering high-performance near-field reader antennas: Comparisons of proposed antenna layouts for ultrahigh-frequency near-field radio-frequency identication," IEEE Antennas Propag. Mag., Vol. 60, No. 1, 14-26, Feb. 2018.
doi:10.1109/MAP.2017.2774141 Google Scholar
27. Sundaram, B. R., S. K. Vasudevan, E. Aravind, G. Karthick, and S. Harithaa, "Smart car design using RFID," Indian J. Sci. Technol., Vol. 8, No. 11, 1-5, 2015. Google Scholar
28. Dhaouadi, M., M. Mabrouk, T. P. Vuong, A. C. De Souza, and A. Ghazel, "UHF tag antenna for near-field and far-field RFID applications," WAMICON 2014, 2014. Google Scholar
29. Yao, Y., Y. Liang, J. Yu, and X. Chen, "Design of a multipolarized RFID reader antenna for UHF near-field applications," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3344-3351, Jul. 2017.
doi:10.1109/TAP.2017.2700873 Google Scholar
30. Michel, A., A. Buffi, R. Caso, P. Nepa, G. Isola, and H. T. Chou, "Design and performance analysis of a planar antenna for near-field UHF-RFID desktop readers," Asia-Pacific Microwave Conference Proceedings, APMC, 1019-1021, 2012. Google Scholar
31. Dhaouadi, M., M. Mabrouk, A. Ghazel, and S. Tedjini, "Electromagnetic analysis of UHF near-field RFID tag antenna,", 2011, doi: 10.1109/URSIGASS.2011.6050654. Google Scholar
32. Ennasar, M. A., O. El Mrabet, K. Mohamed, and M. Essaaidi, "Design and characterization of a broadband flexible polyimide RFID tag sensor for NaCl and sugar detection," Progress In Electromagnetics Research C, Vol. 94, 273-283, 2019.
doi:10.2528/PIERC19052402 Google Scholar
33. Wickramasinghe, S., J. Jayasinghe, and M. Senadeera, "Design of a passive RFID tag antenna with a modified T-match structure," 2021 IEEE 16th Int. Conf. Ind. Inf. Syst. ICIIS 2021 --- Proc., 46-51, 2021. Google Scholar
34. Aznabet, I., M. A. Ennasar, O. El Mrabet, G. Andia Vera, M. Khalladi, and S. Tedjni, "A broadband modified T-shaped planar dipole antenna for UHF RFID tag applications," Progress In Electromagnetics Research C, Vol. 73, 137-144, 2017.
doi:10.2528/PIERC16112102 Google Scholar
35. "Nordic ID Sampo S1 datasheet v18 --- Nordic ID,", https://www.nordicid.com/nordic-id-sampo-s1-datasheet-v18/ (accessed Oct. 03, 2022). Google Scholar
36. Abdelnour, A., N. Fonseca, A. Rennane, D. Kaddour, and S. Tedjini, "Design of RFID sensor tag for cheese quality monitoring," IEEE MTT-S International Microwave Symposium Digest, Vol. 2019-June, 290-292, Jun. 2019. Google Scholar
37. Pichorim, S. F., N. J. Gomes, and J. C. Batchelor, "Two solutions of soil moisture sensing with RFID for landslide monitoring," Sensors 2018, Vol. 18, No. 2, 452, Feb. 2018. Google Scholar
38. Rennane, A., N. Fonseca, A. Abdelnour, et al. "Passive UHF RFID sensor tag for pressure and temperature conditions monitoring,", Sep. 2018, doi: 10.23919/URSI-AT-RASC.2018.8471459. Google Scholar
39. Occhiuzzi, C., S. Parrella, F. Camera, S. Nappi, and G. Marrocco, "RFID-based dual-chip epidermal sensing platform for human skin monitoring," IEEE Sens. J., Vol. 21, No. 4, 5359-5367, Feb. 2021.
doi:10.1109/JSEN.2020.3031664 Google Scholar
40. Vena, A., B. Sorli, B. Saggin, R. Garcia, and J. Podlecki, "Passive UHF RFID sensor to monitor fragile objects during transportation," 2019 IEEE International Conference on RFID Technology and Applications, RFID-TA 2019, 415-420, Sep. 2019. Google Scholar
41. "RFID inlay/label/tag factory/STELLA-R,", https://www.richrfid.com/epc-c1g2-batteryless-led-indicator.html (accessed June 23, 2023). Google Scholar
42. "RFID inlay/label/tag factory/HYGRO-FENIX-RM,", https://www.richrfid.com/epc-c1g2-batteryless-ambient-temperature-and-relative-humidity-sensor-2.html (accessed June 23, 2023). Google Scholar
43. "RFID inlay/label/tag factory/FENIX-RM,", https://www.richrfid.com/epc-c1g2-batteryless-ambient-temperature-sensor-2.html (accessed June 23, 2023). Google Scholar