Vol. 136
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-09
Compact Reconfigurable Triple Bandstop Filter Using Defected Microstrip Structure (DMS)
By
Progress In Electromagnetics Research C, Vol. 136, 13-22, 2023
Abstract
In this paper, a low-profile triple-notched bandstop filter (BSF) is introduced. The proposed filter suppresses frequencies of Bluetooth (2.4 GHz), Wi-Max (3.5 GHz), and Wi-Fi (5.2 GHz) using three defected microstrip structures (DMSs). This BSF may be located in the feed line of an ultra-wideband (UWB) antenna. Consequently, not only the complexity is reduced, but also the area of the presented filter (24×10 mm2) is plummeted. Multiple rectangular slots are etched in the feed line to achieve multi-notch performance. Additionally, two dumbbell-shaped defected ground structures (DGSs) are etched in the ground plane to improve matching. Three PIN diodes are used to reconfigure the frequency response of the filter. By controlling the three diodes, the proposed filter can support six operating modes. The filter is simulated, optimized, fabricated, and measured to be suitable for cognitive radio applications. It achieves an insertion loss of (40, 29, and 24) dB and a rejection rate of (184, 215, and 277) dB/GHz at 2.4, 3.5, and 5.2 GHz, respectively. The simulated and measured results agree well.
Citation
Gomaa M. Elashry, Abd-El-Hadi A. Ammar, and Esmat A. F. Abdallah, "Compact Reconfigurable Triple Bandstop Filter Using Defected Microstrip Structure (DMS)," Progress In Electromagnetics Research C, Vol. 136, 13-22, 2023.
doi:10.2528/PIERC23051808
References

1. Rajput, A., M. Chauhan, and B. Mukherjee, "An ultra-wideband bandstop filter with circularly etched stub resonator," Microwave and Optical Technology Letters, Vol. 63, 2958-2963, 2021.
doi:10.1002/mop.33001

2. Islam, H., S. Das, T. Ali, T. Bose, O. Prakash, and P. Kumar, "A frequency reconfigurable MIMO antenna with bandstop filter decoupling network for cognitive communication," Sensors, Vol. 22, 6937, 2022.
doi:10.3390/s22186937

3. Zuo, X. and L. Qin, "A novel approach to design wideband bandstop filter with wide upper bandpass bandwidth," AEU-International Journal of Electronics and Communications, Vol. 138, 153897, 2021.

4. Taibi, A., M. Trabelsi, and A. A. Saadi, "Efficient design approach of triple notched UWB filter," AEU-International Journal of Electronics and Communications, Vol. 131, 153619, 2021.

5. Haddi, S. B., A. Zugari, A. Zakriti, and S. Achraou, "Design of a band-stop planar filter for telecommunications applications," Procedia Manufacturing, Vol. 46, 788-792, 2020.
doi:10.1016/j.promfg.2020.04.006

6. Ai, J., Y. H. Zhang, K. Da Xu, M. K. Shen, and W. T. Joines, "Miniaturized frequency controllable band-stop filter using coupled-line stub-loaded shorted SIR for tri-band application," IEEE Microwave and Wireless Components Letters, Vol. 27, 627-629, 2017.
doi:10.1109/LMWC.2017.2711532

7. Radonic, V., S. Birgermajer, N. Cselyuszka, and V. Crnojevic-Bengin, "Compact dual-band bandstop filter based on coupled open-ended Hilbert resonators," Journal of Electromagnetic Waves and Applications, Vol. 33, 1318-1328, 2019.
doi:10.1080/09205071.2019.1607568

8. Homayoon, F. and A. A. Heidari, "A band-stop filter based on spoof surface plasmon polaritons using complementary split-ring resonators," International Journal of RF and Microwave Computer- Aided Engineering, Vol. 32, e23186, 2022.
doi:10.1002/mmce.23186

9. Cai, Y., K. D. Xu, Z. Ma, and Y. Liu, "Compact bandstop filters using coupled lines and open/short stubs with multiple transmission poles," IET Microwaves, Antennas & Propagation, Vol. 13, 1368-1372, 2019.
doi:10.1049/iet-map.2018.5745

10. Smari, M., S. Dakhli, E. Fourn, and F. Choubani, "Reconfigurable bandstop filter with switchable CLLs for bandwidth Ccontrol," Progress In Electromagnetics Research Letters, Vol. 110, 11-19, 2023.
doi:10.2528/PIERL23022206

11. Li, P., Y. Shi, Y. Deng, P. Fay, and L. Liu, "Tunable and reconfigurable bandstop filters enabled by optically controlled switching elements," Electronics Letters, Vol. 58, 985-987, 2022.
doi:10.1049/ell2.12654

12. Asci, C., A. Sadeqi, W. Wang, H. Rezaei Nejad, and S. Sonkusale, "Design and implementation of magnetically-tunable quad-band filter utilizing split-ring resonators at microwave frequencies," Scienti c Reports, Vol. 10, 1050, 2020.
doi:10.1038/s41598-020-57773-6

13. Garg, M., R. Chahar, S. Yadav, S. Garg, and D. Noor, "A novel polarization independent triple bandstop frequency selective surface for the mobile and wireless communication," 2017 International Conference on Computing, Communication and Automation (ICCCA), 1518-1521, 2017.
doi:10.1109/CCAA.2017.8230042

14. Zheng, X. and T. Jiang, "Triple notches bandstop microstrip filter based on archimedean spiral electromagnetic bandgap structure," Electronics, Vol. 8, 964, 2019.
doi:10.3390/electronics8090964

15. Koirala, G. R. and N.-Y. Kim, "Multiband bandstop filter using an I-stub-loaded meandered defected microstrip structure," Radioengineering, Vol. 25, 61-66, 2016.
doi:10.13164/re.2016.0061

16. Min, X. and H. Zhang, "Compact triple-band bandstop filter using folded, symmetric stepped- impedance resonators," AEU-International Journal of Electronics and Communications, Vol. 77, 105-111, 2017.

17. Elashry, G. M., H. A. Mohamed, A. A. Abd-El-Hadi, and E. A. Abdallah, "Cloverleaf filtenna with reconfigurable quintuple rejection bands using defected microstrip structure," AEU-International Journal of Electronics and Communications, Vol. 168, 154708, 2023.

18. Belmajdoub, A., M. Jorio, S. Bennani, A. Lakhssassi, and M. Amzi, "Design of compact microstrip bandpass filter using square DMS slots for Wi-Fi and bluetooth applications," TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 19, 724-729, 2021.
doi:10.12928/telkomnika.v19i3.18768

19. Hammed, R. T. and B. H. Hameed, "Compact multiple bandstop filter using integrated circuit of defected microstrip structure (DMS) and dual-mode resonator," AEU-International Journal of Electronics and Communications, Vol. 107, 209-214, 2019.

20. Rebeiz, G. M., K. Entesari, I. C. Reines, S.-J. Park, M. A. El-Tanani, A. Grichener, et al. "Tuning in to RF MEMS," IEEE Microwave Magazine, Vol. 10, 55-72, 2009.
doi:10.1109/MMM.2009.933592

21. Li, Y., W. Li, and Q. Ye, "A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications," International Journal of Antennas and Propagation, Vol. 2013, Article ID 472645, 2013.

22. Kingsly, S., D. Thangarasu, M. Kanagasabai, M. G. N. Alsath, R. R. Thipparaju, S. K. Palaniswamy, et al. "Multiband reconfigurable filtering monopole antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 1416-1420, 2018.
doi:10.1109/LAWP.2018.2848702

23. Harikrishnan, A., S. Mridula, and P. Mohanan, "Reconfigurable band stop filter using slotted elliptical patch resonator with defected ground," 2021 6th International Conference for Convergence in Technology (I2CT), 1-5, 2021.

24. Costantine, J., Y. Tawk, S. E. Barbin, and C. G. Christodoulou, "Reconfigurable antennas: Design and applications," Proceedings of the IEEE, Vol. 103, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000

25. Gomez-Garcia, R., J.-M. Munoz-Ferreras, W. Feng, and D. Psychogiou, "Input-reflectionless negative-group-delay bandstop-filter networks based on lossy complementary duplexers," 2019 IEEE MTT-S International Microwave Symposium (IMS), 1031-1034, 2019.
doi:10.1109/MWSYM.2019.8700887