Vol. 135
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-21
Quasi-Elliptic Triple Passband Filter Using Stub Loaded Step Impedance Resonator and Non-Resonating T Structure
By
Progress In Electromagnetics Research C, Vol. 135, 35-42, 2023
Abstract
This article presents a simple method to introduce multiple Transmission Zeros in the stopbands of a triple passband Chebyshev filter and also suppress the spurious bands below a satisfactory level, so that it can be treated as a Quasi-Elliptic filter. A pair of Stub Loaded Step Impedance Resonators (SLSIRs) is used to produce the Chebyshev filter with central passbands at 2.5, 5.5, and 9 GHz. An asymmetric Non-Resonating T (NRT) structure is implemented on each of the SLSIR to achieve the improved skirt selectivity. Each non-resonating structure produces three Transmission Zeros (in total six). In addition to the satisfactory stopband performances, the Quasi-Elliptic triple band filter produces insertion losses of |0.4|, |0.6|, and |0.7| dB at three centre frequencies respectively. Simulation of the proposed filter is done using HFSS13 software, and to validate the simulation, a prototype is fabricated on an Arlon AD250 (Dielectric Constant 2.5, height 0.76 mm) substrate.
Citation
Anirban Neogi, and Jyoti Ranjan Panda, "Quasi-Elliptic Triple Passband Filter Using Stub Loaded Step Impedance Resonator and Non-Resonating T Structure," Progress In Electromagnetics Research C, Vol. 135, 35-42, 2023.
doi:10.2528/PIERC23052201
References

1. Snyder, R. V., S. Bastioli, and G. Macchiarella, "The extracted-zero: A practical solution for transmission zeros in wideband filters," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 9, 1043-1046, 2021.
doi:10.1109/LMWC.2021.3089377

2. Bakr, M. S., "Triple-mode microwave filters with arbitrary prescribed transmission zeros," IEEE Access, Vol. 9, 22045-22052, 2021.
doi:10.1109/ACCESS.2021.3052059

3. Huang, Z., Y. Cheng, and Y. Zhang, "Dual-mode dielectric waveguide filters with controllable transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 5, 449-452, 2021.
doi:10.1109/LMWC.2021.3064088

4. Chang, H., W. Sheng, J. Cui, and J. Lu, "Multilayer dual-band bandpass filter with multiple transmission zeros using discriminating coupling," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 7, 645-648, 2020.
doi:10.1109/LMWC.2020.2995181

5. Guerrero, E., J. Verdu, and P. de Paco, "Synthesis of extracted pole filters with transmission zeros in both stopbands and nonresonant nodes of the same nature," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 1, 17-20, 2021.
doi:10.1109/LMWC.2020.3035848

6. Chen, S., L.-F. Shi, G.-X. Liu, and J.-H. Xun, "An alternate circuit for narrow-bandpass elliptic microstrip filter design," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 624-626, 2017.
doi:10.1109/LMWC.2017.2711528

7. Xue, Q. and J. Y. Jin, "Bandpass filters designed by transmission zero resonator pairs with proximity coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 1, 4103-4110, 2017.
doi:10.1109/TMTT.2017.2697878

8. Zhang, B., Y. Wu, and Y. Liu, "Wideband single-ended and differential bandpass filters based on terminated coupled line structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 3, 761-774, 2017.
doi:10.1109/TMTT.2016.2628741

9. Chen, C., "A coupled-line coupling structure for the design of quasi elliptic Bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1921-1925, 2018.
doi:10.1109/TMTT.2017.2783378

10. Wang, X., J. Wang, L. Zhu, W. Choi, and W. Wu, "Compact strip line dual-band bandpass filters with controllable frequency ratio and high selectivity based on self-coupled resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 1, 102-110, 2020.
doi:10.1109/TMTT.2019.2945768

11. Gomez-Garcia, R., L. Yang, J. Munoz-Ferreras, and D. Psychogiou, "Selectivity-enhancement technique for stepped-impedance resonator dual-passband filters," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 7, 453-455, 2019.
doi:10.1109/LMWC.2019.2916458

12. Luo, X., X. Cheng, J. Han, et al. "Compact dual-band bandpass filter using defected SRR and irregular SIR," Electronic Letter, Vol. 55, No. 8, 463-465, 2019.
doi:10.1049/el.2018.8032

13. Li, D., J.-A. Wang, Y. Liu, Z. Chen, and L. Yang, "Selectivity-enhancement technique for parallel-coupled SIR based dual-band bandpass filter," Microwave and Optical Technology Letters, Vol. 63, No. 19, 2020.

14. Gao, S., Z.-Y. Xiao, and H.-H. Hu, "A novel compact dual-band bandpass filter using SIRs with open-stub line," China-Japan Joint Microwave Conference, IEEE Xplore, 2008.

15. Zahedi, A., F. A. Boroumand, and H. Aliakbrian, "Analytical transmission line model for complex dielectric constant measurement of thin substrates using T-resonator method," IET Microwaves, Antennas & Propagation, Vol. 14, No. 15, 1919-2132, 2020.
doi:10.1049/iet-map.2019.1117

16. Tang, J., H. Liu, and Y. Yang, "Compact wide-stopband dual-band balanced filter using an electromagnetically coupled SIR pair with controllable transmission zeros and bandwidths," IEEE Transactions on Circuit and Systems: II, Vol. 67, No. 11, 2357-2361, 2020.

17. Pelluri, S. and M. V. Kartikeyan, "Compact triple-band bandpass filter using multi-mode HMSIW cavity and half-mode DGS," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 2, 103-110, 2020.
doi:10.1017/S1759078720000902

18. Cheab, S., P. W. Wong, and S. Soeung, "Design of multi-band filters using parallel connected topology," Radioengineering, Vol. 27, No. 1, 186-192, 2018.
doi:10.13164/re.2018.0186

19. Tripathi, S., B. Mohapatra. P. Tiwari, and V. S. Tripathi, "Multi-mode resonator based concurrent triple-band band pass lter with six transmission zeros for defence/intelligent transportation systems application," Defence Science Journal, Vol. 71, No. 3, 403-409, 2021.
doi:10.14429/dsj.71.16110

20. Guo, Z.-C., S.-W. Wong, and L. Zhu, "Triple-passband cavity filters with high selectivity under operation of triple modes," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 9, No. 7, 1337-1344, 2019.
doi:10.1109/TCPMT.2018.2869854