1. Jo, I.-H., H.-W. Lee, G. Jeong, W.-Y. Ji, and C.-B. Park, "A study on the reduction of cogging torque for the skew of a magnetic geared synchronous motor," IEEE Trans. Magn., Vol. 55, No. 2, 1-5, Feb. 2019.
doi:10.1109/TMAG.2018.2873310 Google Scholar
2. Aiso, K., K. Akatsu, and Y. Aoyama, "A novel reluctance magnetic gear for high-speed motor," IEEE Trans. Ind. Appl., Vol. 55, No. 3, 2690-2699, May-Jun. 2019.
doi:10.1109/TIA.2019.2900205 Google Scholar
3. Tang, H., J. Di, Z. Wu, and W. Li, "Temperature analysis for the asymmetric six-phase permanent magnet synchronous motor in healthy and fault-tolerant modes," IEEE Trans. Ind. Electron., Vol. 70, No. 7, 6482-6493, Jul. 2023.
doi:10.1109/TIE.2022.3199938 Google Scholar
4. Huang, X., Q. Tan, L. Li, J. Li, and Z. Qian, "Winding temperature field model considering void ratio and temperature rise of a permanent-magnet synchronous motor with high current density," IEEE Trans. Ind. Electron., Vol. 64, No. 3, 2168-2177, Mar. 2017.
doi:10.1109/TIE.2016.2625242 Google Scholar
5. Yan, L., Z. Dong, and S. Zhang, "Thermal analysis of a novel linear oscillating machine based on direct oil-cooling windings," IEEE Trans. Energy Convers., Vol. 37, No. 2, 1042-1051, Jun. 2022.
doi:10.1109/TEC.2021.3118930 Google Scholar
6. Xu, Y., B. Zhang, and G. Feng, "Research on thermal capacity of a high-torque-density direct drive permanent magnet synchronous machine based on a temperature cycling module," IEEE Access, Vol. 8, 155721-155731, 2020.
doi:10.1109/ACCESS.2020.3019483 Google Scholar
7. Song, Z., R. Huang, W. Wang, S. Liu, and C. Liu, "An improved dual iterative transient thermal network model for PMSM with natural air cooling," IEEE Trans. Energy Convers., Vol. 37, No. 4, 2588-2600, Dec. 2022.
doi:10.1109/TEC.2022.3179172 Google Scholar
8. Gan, C., Y. Chen, X. Cui, J. Sun, R. Qu, and J. Si, "Comprehensive investigation of loss calculation and sequential iterative uid-solid coupling schemes for high-speed switched reluctance motors," IEEE Trans. Energy Convers., Vol. 36, No. 2, 671-681, Jun. 2021.
doi:10.1109/TEC.2020.3023039 Google Scholar
9. Yang, C., Y. Zhang, and H. Qiu, "Influence of output voltage harmonic of inverter on loss and temperature field of permanent magnet synchronous motor," IEEE Trans. Magn., Vol. 55, No. 6, 1-5, Jun. 2019. Google Scholar
10. Guo, C., S. Huang, J. Wang, and Y. Feng, "Research of cryogenic permanent magnet synchronous motor for submerged liquefied natural gas pump," IEEE Trans. Energy Convers., Vol. 33, No. 4, 2030-2039, Dec. 2018.
doi:10.1109/TEC.2018.2868954 Google Scholar
11. Wang, H., J. Chen, Y. Jiang, and D. Wang, "Coupled electromagnetic and thermal analysis of permanent magnet rectifier generator based on LPTN," IEEE Trans. Magn., Vol. 58, No. 2, 1-5, Feb. 2022.
doi:10.1109/TMAG.2021.3140011 Google Scholar
12. Tong, W., R. Sun, S. Li, and R. Tang, "Loss and thermal analysis for high-speed amorphous metal PMSMs using 3-D electromagnetic-thermal Bi-directional coupling," IEEE Trans. Energy Convers., Vol. 36, No. 4, 2839-2849, Dec. 2021.
doi:10.1109/TEC.2021.3065336 Google Scholar
13. Huang, X., L. Li, B. Zhou, C. Zhang, and Z. Zhang, "Temperature calculation for tubular linear motor by the combination of thermal circuit and temperature field method considering the linear motion of air gap," IEEE Trans. Ind. Electron., Vol. 61, No. 8, 3923-3931, Aug. 2014.
doi:10.1109/TIE.2013.2286576 Google Scholar
14. Tang, Y., L. Chen, F. Chai, and T. Chen, "Thermal modeling and analysis of active and end windings of enclosed permanent-magnet synchronous In-wheel motor based on multi-block method," IEEE Trans. Energy Convers., Vol. 35, No. 1, 85-94, Mar. 2020.
doi:10.1109/TEC.2019.2946384 Google Scholar
15. Uzhegov, N., J. Barta, J. Kurfurst, C. Ondrusek, and J. Pyrhonen, "Comparison of high-speed electrical motors for a turbo circulator application," IEEE Trans. Ind. Appl., Vol. 53, No. 5, 4308-4317, Sept.-Oct. 2017.
doi:10.1109/TIA.2017.2700793 Google Scholar
16. Liu, G., M. Liu, Y. Zhang, H. Wang, and C. Gerada, "High-speed permanent magnet synchronous motor iron loss calculation method considering multiphysics factors," IEEE Trans. Ind. Electron., Vol. 67, No. 7, 5360-5368, Jul. 2020.
doi:10.1109/TIE.2019.2934075 Google Scholar
17. Li, W., P. Wang, D. Li, X. Zhang, J. Cao, and J. Li, "Multiphysical field collaborative optimization of premium induction motor based on GA," IEEE Trans. Ind. Electron., Vol. 65, No. 2, 1704-1710, Feb. 2018.
doi:10.1109/TIE.2017.2752120 Google Scholar
18. Zhang, M., W. Li, and H. Tang, "Demagnetization fault diagnosis of the permanent magnet motor for electric vehicles based on temperature characteristic quantity," IEEE Trans. Transp. Electrif., Vol. 9, No. 1, 759-770, Mar. 2023.
doi:10.1109/TTE.2022.3200927 Google Scholar
19. Almandoz, G., I. Gomez, G. Ugalde, J. Poza, and A. J. Escalada, "Study of demagnetization risk in PM machines," IEEE Trans. Ind. Appl., Vol. 55, No. 4, 3490-3500, Jul.-Aug. 2019.
doi:10.1109/TIA.2019.2904459 Google Scholar