Vol. 135
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-02
Application of Non-Embedded Uncertainty Analysis Methods in Worst Case Estimation of the EMC
By
Progress In Electromagnetics Research C, Vol. 135, 173-180, 2023
Abstract
In recent years, the non-embedded uncertainty analysis method has been widely used in the field of Electromagnetic Compatibility due to its wide application range. In this paper, from the perspective of the practical application of uncertainty analysis methods, four non-embedded uncertainty analysis methods are applied to the worst-case estimation of Electromagnetic Compatibility, which are the Monte Carlo Method, Stochastic Collocation Method, Stochastic Reduced-Order Models, and Kriging surrogate model method. The performances of four uncertainty analysis methods in terms of computational accuracy, computational efficiency, and ability to deal with complex problems are compared in detail by using the parallel cable crosstalk prediction example in the existing literature and the uncertainty analysis example of self-constructed optimization test function, which provides a theoretical basis for uncertainty analysis method to guide the actual Electromagnetic Compatibility design.
Citation
Jinjun Bai, Xintao Geng, and Xiaobing Niu, "Application of Non-Embedded Uncertainty Analysis Methods in Worst Case Estimation of the EMC," Progress In Electromagnetics Research C, Vol. 135, 173-180, 2023.
doi:10.2528/PIERC23061802
References

1. Manfredi, P., D. V. Ginste, I. S. Stievano, D. D. Zutter, and F. Canavero, "Stochastic transmission line analysis via polynomial chaos methods: An overview," IEEE Electromagnetic Compatibility Magazine, Vol. 6, No. 3, 77-84, 2017.
doi:10.1109/MEMC.0.8093844

2. Manfredi, P., D. V. Ginste, D. D. Zutter, and F. Canavero, "Generalized decoupled polynomial chaos for nonlinear circuits with many random parameters," IEEE Microwave & Wireless Components Letters, Vol. 25, No. 8, 505-507, Aug. 2015.
doi:10.1109/LMWC.2015.2440779

3. Spindelberger, C. and H. Arthaber, "Improving the performance of direct-conversion SDRs for radiated precompliance measurements," IEEE Letters on Electromagnetic Compatibility Practice and Applications, Vol. 5, No. 1, 22-26, 2023.
doi:10.1109/LEMCPA.2022.3227409

4. Chen, J., S. Portillo, G. Heileman, G. Hadi, R. Bilalic, M. Martinez-Ramon, S. Hemmady, and E. Schamiloglu, "Time-varying radiation impedance of microcontroller GPIO ports and their dependence on software instructions," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, No. 4, 1147-1159, 2022.
doi:10.1109/TEMC.2022.3162492

5. Pignari, S. A., G. Spadacini, and F. Grassi, "Modeling field-to-wire coupling in random bundles of wires," IEEE Electromagnetic Compatibility Magazine, Vol. 6, No. 3, 85-90, 2017.
doi:10.1109/MEMC.0.8093845

6. Xie, H., J. F. Dawson, J. Yan, A. Marvin, and M. Robinson, "Numerical and analytical analysis of stochastic electromagnetic fields coupling to a printed circuit board trace," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 4, 1128-1135, 2020.
doi:10.1109/TEMC.2019.2954303

7. Manfredi, P., "A hierarchical approach to dimensionality reduction and nonparametric problems in the polynomial chaos simulation of transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 3, 736-745, 2019.
doi:10.1109/TEMC.2019.2918724

8. Cui, C. F. and Z. Zhang, "High-dimensional uncertainty quantification of electronic and photonic IC with non-Gaussian correlated process variations," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 39, No. 8, 1649-1661, 2019.
doi:10.1109/TCAD.2019.2925340

9. Bai, J., G. Zhang, A. Duffy, and L. Wang, "Dimension-reduced sparse grid strategy for a stochastic collocation method in EMC software," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 218-224, 2018.
doi:10.1109/TEMC.2017.2699691

10. Fei, Z., H. Yi, J. Zhou, and X. Qian, "Uncertainty quanti cation of crosstalk using stochastic reduced order models," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 228-239, 2016.
doi:10.1109/TEMC.2016.2604361

11. Ren, Z., J. Ma, Y. Qi, D. Zhang, and C.-S. Koh, "Managing uncertainties of permanent magnet synchronous machine by adaptive kriging assisted weight index monte carlo simulation method," IEEE Transactions on Energy Conversion, Vol. 35, No. 4, 2162-2169, 2020.
doi:10.1109/TEC.2020.3009249

12. Bai, J., J. C. Sun, and N. Wang, "Convergence determination of EMC uncertainty simulation based on the improved mean equivalent area method," The Applied Computational Electromagnetics Society Journal, Vol. 36, No. 11, 1446-1452, 2021.

13. Bai, J., G. Zhang, D. Wang, A. P. Duffy, and L. Wang, "Performance comparison of the SGM and the SCM in EMC simulation," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 6, 1739-1746, 2016.
doi:10.1109/TEMC.2016.2588580

14. Duffy, A. P., A. Orlandi, and G. Zhang, "Review of the feature selective validation method (FSV). Part I --- Theory," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 4, 814-821, 2018.
doi:10.1109/TEMC.2017.2776406

15. Orlandi, A., A. P. Duffy, and G. Zhang, "Review of the feature selective validation method (FSV). Part II --- Performance analysis and research fronts," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 4, 1029-1035, 2018.
doi:10.1109/TEMC.2018.2796080