1. Siegel, R., K. Miller, H. Fuchs, and A. Jemal, "Cancer statistics," CA Cancer J. Clin., Vol. 72, 7-33, 2022.
doi:10.3322/caac.21708 Google Scholar
2. Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA Cancer J. Clin., Vol. 68, 394-424, 2018.
doi:10.3322/caac.21492 Google Scholar
3. Molaei, A., A. Bisulco, L. Tirado, et al. "3-D-printed E-band compressive horn antenna for high-sensing-capacity imaging applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1639-1642, Sept. 2018.
doi:10.1109/LAWP.2018.2859912 Google Scholar
4. Abbak, M., M. N. Akinci, M. Cayoren, and I. Akduman, "Experimental microwave imaging with a novel corrugated Vivaldi antenna," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3302-3307, Jun. 2017.
doi:10.1109/TAP.2017.2670228 Google Scholar
5. Salvador, S. M., E. C. Fear, M. Okoniewski, and J. R. Matyas, "Exploring joint tissues with microwave imaging," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 8, 2307-2313, Aug. 2010.
doi:10.1109/TMTT.2010.2052662 Google Scholar
6. Islam, M., M. Samsuzzaman, M. Islam, S. Kibria, and M. Singh, "A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor," Sensors, Vol. 18, No. 9, 2962, 2018.
doi:10.3390/s18092962 Google Scholar
7. Porter, E., H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Trans. Med. Imag., Vol. 35, No. 6, 1501-1509, Jun. 2016.
doi:10.1109/TMI.2016.2518489 Google Scholar
8. Islam, M. M., M. T. Islam, M. R. I. Faruque, M. Samsuzzaman, N. Misran, and H. Arshad, "Microwave imaging sensor using compact metamaterial UWB antenna with a high correlation factor," Materials, Vol. 8, No. 8, 4631-4651, 2015.
doi:10.3390/ma8084631 Google Scholar
9. Moosazadeh, M., "High-gain antipodal vivaldi antenna surrounded by dielectric for wideband applications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4349-4352, Aug. 2018.
doi:10.1109/TAP.2018.2840839 Google Scholar
10. Yesilyurt, O. and G. Turhan-Sayan, "Metasurface lens for ultra-wideband planar antenna," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 719-726, Feb. 2020.
doi:10.1109/TAP.2019.2940462 Google Scholar
11. Sang, L., S. Wu, G. Liu, J. Wang, and W. Huang, "High-gain UWB Vivaldi antenna loaded with reconfigurable 3-D phase adjusting unit lens," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 2, 322-326, Feb. 2020.
doi:10.1109/LAWP.2019.2961393 Google Scholar
12. Shi, X., Y. Lu, J. Shi, Y. Xiong, and X. Lou, "High-gain Vivaldi antipodal broadband antenna with a CSRR array and T-shaped strips," Proc. 9th Asia-Pacific Conf. Antennas Propag., 1-2, Xiamen, China, 2020. Google Scholar
13. Shi, X., Y. Cao, Y. Hu, X. Luo, H. Yang, and L. H. Ye, "A high-gain antipodal vivaldi antenna with director and metamaterial at 1-28 GHz," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 12, 2432-2436, Dec. 2021.
doi:10.1109/LAWP.2021.3114061 Google Scholar
14. Asok, A. O., A. N. Jaleel, and S. Dey, "Microwave imaging over UWB with antipodal Vivaldi antenna for concealed weapon detection," 2020 IEEE MTT-S Latin America Microwave Conference (LAMC 2020), 1-4, 2021. Google Scholar
15. Talukder, M., M. Samsuzzaman, M. Islam, R. Azim, M. Mahmud, and M. Islam, "Compact ellipse shaped patch with ground slotted broadband monopole patch antenna for head imaging applications," Chinese Journal of Physics, Vol. 72, No. 5, 310-326, 2021.
doi:10.1016/j.cjph.2021.05.005 Google Scholar
16. Islam, M. T., M. Samsuzzaman, S. Kibria, and M. T. Islam, "Experimental breast phantoms for estimation of breast tumor using microwave imaging systems," IEEE Access, Vol. 6, 78587-78597, 2018.
doi:10.1109/ACCESS.2018.2885087 Google Scholar
17. Shepp, L. A. and Y. Vardi, "Maximum likelihood reconstruction for emission tomography," IEEE Trans. Med. Imag., Vol. 1, No. 2, 113-122, Oct. 1982.
doi:10.1109/TMI.1982.4307558 Google Scholar
18. Lim, H. B., N. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-Sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, Jun. 2008.
doi:10.1109/TBME.2008.919716 Google Scholar
19. Islam, M. T., M. Samsuzzaman, S. Kibria, N. Misran, and M. T. Islam, "Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm," Sci. Rep., Vol. 9, No. 1, 1-14, Dec. 2019.
doi:10.1038/s41598-018-37186-2 Google Scholar
20. Islam, M. T., M. Z. Mahmud, M. T. Islam, S. Kibria, and M. Samsuzzaman, "A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array," Sci. Rep., Vol. 9, No. 1, 1-13, Dec. 2019.
doi:10.1038/s41598-018-37186-2 Google Scholar
21. Islam, M., M. Samsuzzaman, M. Islam, S. Kibria, and M. Singh, "A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor," Sensors, Vol. 18, No. 9, 2962, 2018.
doi:10.3390/s18092962 Google Scholar
22. Shao, W., A. Edalati, T. R. McCollough, and W. J. McCollough, "A time-domain measurement system for UWB microwave imaging," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 5, 2265-2275, 2018.
doi:10.1109/TMTT.2018.2801862 Google Scholar
23. Mahmud, M. Z., M. T. Islam, N. Misran, S. Kibria, and M. Samsuzzaman, "Microwave imaging for breast tumor detection using uniplanar AMC based CPW-fed microstrip antenna," IEEE Access, Vol. 6, 44763-44775, 2018.
doi:10.1109/ACCESS.2018.2859434 Google Scholar
24. Porter, E., H. Bahrami, A. Santorelli, et al. "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Trans. Med. Imag., Vol. 35, No. 6, 1501-1509, Jun. 2016.
doi:10.1109/TMI.2016.2518489 Google Scholar
25. Zerrad, F.-E., M. Taouzari, E. M. Makroum, J. El Aoufi, M. T. Islam, V. Ozkaner, Y. I. Abdulkarim, and M. Karaaslan, "Multilayered meta-materials array antenna based on artificial magnetic conductor's structure for the application diagnostic breast cancer detection with microwave imaging," Med. Eng. Phys., Vol. 99, Art. No. 103737, Jan. 2022.
doi:10.1016/j.medengphy.2021.103737 Google Scholar
26. Bhargava, D. and P. Rattanadecho, "Microstrip antenna for radar-based microwave imaging of breast cancer: Simulation analysis," Int. J. Commun. Antenna Propag., Vol. 12, 47-53, 2022. Google Scholar
27. Kaur, G. and A. Kaur, "Monostatic radar-based microwave imaging of breast tumor using an ultra-wideband Dielectric Resonator Antenna (DRA) with a Sierpinski fractal defected ground structure," MAPAN, Vol. 37, No. 4, 917-928, 2022.
doi:10.1007/s12647-022-00536-7 Google Scholar
28. Syed, A., M. Sheikh, M. T. Islam, and H. Rmili, "Metamaterial-loaded 16-printed log periodic antenna array for microwave imaging of breast tumor detection," Int. J. Antennas Propag., 2022. Google Scholar
29. Dey, A. B. and W. Arif, "Design and analysis of a CPW-fed flexible ultrawideband antenna for microwave imaging of breast cancer," Int. J. RF Microw. Comput. Aided Eng., Vol. 32, No. 9, e23262, 2022.
doi:10.1002/mmce.23262 Google Scholar
30. Abbak, M., M. Cayoren, and I. Akduman, "Microwave breast phantom measurements with a cavity-backed Vivaldi antenna," IET Microw., Antennas Propag., Vol. 8, No. 13, 1127-1133, Oct. 2014.
doi:10.1049/iet-map.2013.0484 Google Scholar
31. Wu, B., Y. Ji, and G. Fang, "Design and measurement of compact tapered slot antenna for UWB microwave imaging radar," Proc. 9th Int. Conf. Electron. Meas. Instrum. (ICEMI), 2-226-2-229, 2009. Google Scholar
32. Islam, M. T., M. Z. Mahmud, N. Misran, J.-I. Takada, and M. Cho, "Microwave breast phantom measurement system with compact side slotted directional antenna," IEEE Access, Vol. 5, 5321-5330, 2017.
doi:10.1109/ACCESS.2017.2690671 Google Scholar
33. Samsuzzaman, M., M. T. Islam, M. T. Islam, A. A. S. Shovon, R. I. Faruque, and N. Misran, "A 16-modified antipodal Vivaldi antenna array for microwave-based breast tumor imaging applications," Microw. Opt. Technol. Lett., Vol. 61, 2110-2118, 2019.
doi:10.1002/mop.31873 Google Scholar
34. Porter, E., E. Kirshin, A. Santorelli, M. Coates, and M. Popovic, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas Wireless Propag. Lett., Vol. 12, 229-232, 2013.
doi:10.1109/LAWP.2013.2247374 Google Scholar
35. Porter, E., H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Trans. Med. Imag., Vol. 35, No. 6, 1501-1509, Jun. 2016.
doi:10.1109/TMI.2016.2518489 Google Scholar
36. Sugitani, T., S. Kubota, A. Toya, X. Xiao, and T. Kikkawa, "A compact 4 x 4 planar UWB antenna array for 3-D breast cancer detection," IEEE Antennas Wireless Propag. Lett., Vol. 12, 733-736, 2013.
doi:10.1109/LAWP.2013.2270933 Google Scholar
37. Islam, M. T., M. Samsuzzaman, M. Faruque, M. J. Singh, and M. Islam, "Microwave imaging based breast tumor detection using compact wide slotted UWB patch antenna," Optoelectron. Adv. Mater. Rapid Commun., Vol. 13, 448-457, 2019. Google Scholar
38. Bhattacharjee, A., A. Bhawal, A. Karmakar, A. Saha, and D. Bhattacharya, "Vivaldi antennas: A historical review and current state of art," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 8, 833-850, 2021.
doi:10.1017/S1759078720001415 Google Scholar
39. Asok, A. O., G. Nath, and S. Dey, "Microwave imaging with novel time-domain clutter removal algorithm using high gain antennas for concealed object detections," IEEE Transactions on Computational Imaging, Vol. 9, 147-158, 2023.
doi:10.1109/TCI.2023.3244392 Google Scholar
40. Asok, A. O., S. J. G. Nath, and S. Dey, "Concealed object detection with microwave imaging using vivaldi antennas utilizing novel time-domain beamforming algorithm," IEEE Access, Vol. 10, 116987-117000, 2022.
doi:10.1109/ACCESS.2022.3218892 Google Scholar
41. Asok, A. O., S. J. G. Nath, and S. Dey, "Non-invasive breast tumor detection with antipodal Vivaldi antenna using monostatic approach," Int. J. RF Microw. Comput. Aided Eng., e23539, 2022. Google Scholar
42. Asok, A. O., R. Anjaly, S. Dey, and N. Kunju, "Monopole antenna loaded with wind mill shaped FSS for breast tumor detection," 2023 First International Conference on Microwave, Antenna and Communication (MAC), 1-4, Prayagraj, India, 2023. Google Scholar
43. Asok, A. O., N. Kunju, and S. Dey, "Microwave medical imaging using a compact monopole antenna for brain tumor detection," 2023 First International Conference on Microwave, Antenna and Communication (MAC), 1-4, Prayagraj, India, 2023. Google Scholar
44. Asok, A. O., M. A. Shukoor, and S. Dey, "Breast cancer detection with metamerial enabled monopole antennas using microwave imaging," 2022 IEEE International Conference on Emerging Electronics (ICEE), 1-4, Bangalore, India, 2022. Google Scholar
45. Asok, A. O., S. J. Gokul Nath, S. J. Vidhya, N. Kunju, and S. Dey, "Brain tumor detection with compact monopole antennas using microwave medical imaging," 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 439-443, Bangalore, India, 2022. Google Scholar
46. Asok, A. O., J. S. Vidhya, N. Kunju, and S. Dey, "Wearable, conformal, compact and flexible F-slot monopole antenna on textile for non-invasive biomedical imaging," 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 465-470, Bangalore, India, 2022. Google Scholar
47. Asok, A. O., J. S. Vidhya, F. Bethel Babu, S. Dey, and N. Kunju, "Metamerial-based monopole antenna for breast cancer detection," 2022 IEEE 19th India Council International Conference (INDICON), 1-4, Kochi, India, 2022. Google Scholar
48. Asok, A. O., G. N. S. J. A. Tripathi, S. Chauhan, K. S. Kiran, and S. Dey, "Double ridge conical horn antenna with dielectric loading for microwave imaging of human breast," 2022 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1-4, Rourkela, India, 2022. Google Scholar
49. Nath, G. S. J., A. O. Asok, and S. Dey, "Metallic object detection inside human stomach with antipodal Vivaldi antenna utilizing microwave imaging technique," 2022 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1-4, Rourkela, India, 2022. Google Scholar
50. Asok, A. O., S. J. G. Nath, and S. Dey, "Double ridge horn antenna with curved dielectric loading for microwave imaging applications," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 167-170, Jaipur, Rajasthan, India, 2021.
doi:10.1109/InCAP52216.2021.9726351 Google Scholar
51. Asok, A. O. and S. Dey, "UWB antipodal antenna with parasitic patch and elliptical cylindrical dielectric for concealed object detection with microwave imaging," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 741-742, Singapore, 2021. Google Scholar
52. Asok, A. O. and S. Dey, "UWB antipodal vivaldi antenna with metamaterial slabs and dielectric enclosure for microwave to millimeter wave imaging applications," 2021 IEEE Asia-Pacific Microwave Conference (APMC), 49-51, Brisbane, Australia, 2021. Google Scholar
53. Asok, A. O., S. J. G. Nath, and S. Dey, "Microwave breast imaging using synthetic aperture radar method utilizing UWB antenna," 2020 IEEE MTT-S Latin America Microwave Conference (LAMC 2020), 1-4, Cali, Colombia, 2021. Google Scholar
54. Asok, A. O. and S. Dey, "Novel UWB antipodal antenna with paddle shaped stubs and frustum shaped dielectric loading for microwave imaging applications," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 1060-1062, Hong Kong, Hong Kong, 2020. Google Scholar
55. Reimer, T., M. Solis-Nepote, and S. Pistorius, "The application of an iterative structure to the delay-and-sum and the delay-multiply-and-sum beamformers in breast microwave imaging," Diagnostics, Vol. 10, No. 6, 411-426, 2020.
doi:10.3390/diagnostics10060411 Google Scholar
56. Reimer, T., J. Krenkevich, and S. Pistorius, "An open-access experimental dataset for breast microwave imaging," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, Denmark, 2020. Google Scholar