1. Dimopoulos, H. G., Analog Electronic Filters: Theory, Design and Synthesis, Springer Science & Business Media, 2011.
2. Levy, R., Classic Works in RF Engineering: Volume-2 --- Microwave and RF Filters, Artech House, 2007.
3. Tang, C. W. and M. G. Chen, "A microstrip ultra-wideband bandpass filter with cascaded broadband bandpass and bandstop filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 11, 2412-2418, 2007.
doi:10.1109/TMTT.2007.908671 Google Scholar
4. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567 Google Scholar
5. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005, ISBN: 978-0-471-37047-5.
6. Bayatpur, F. and K. Sarabandi, "Single-layer high-order miniaturized-element frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 774-781, 2008.
doi:10.1109/TMTT.2008.919654 Google Scholar
7. Huang, H. F. and H. Huang, "Millimeter-wave wideband high effeciency circular airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetic Research, Vol. 173, 151-159, 2022.
doi:10.2528/PIER22022405 Google Scholar
8. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2010.
doi:10.1109/TAP.2009.2037702 Google Scholar
9. Chiu, C. N. and K. P. Chang, "A novel miniaturized-element frequency selective surface having a stable resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1175-1177, 2008. Google Scholar
10. Wu, T.-K., Frequency Selective Surface and Grid Array, Wiley-Interscience, 1995, ISBN: 978-0471311898.
11. Li, H. P., G. M. Wang, J. G. Liang, and X. J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetic Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011 Google Scholar
12. Al-Joumayly, M. A. and N. Behdad, "Wideband planar microwave lenses using sub-wavelength spatial phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4542-4552, 2011.
doi:10.1109/TAP.2011.2165515 Google Scholar
13. Li, M., M. A. Al-Joumayly, and N. Behdad, "Broadband true time-delay microwave lenses based on miniaturized element frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1166-1179, 2013.
doi:10.1109/TAP.2012.2227444 Google Scholar
14. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, 139-150, 2014.
doi:10.1038/nmat3839 Google Scholar
15. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Reports on Progress in Physics, Vol. 81, 2018. Google Scholar
16. Chen, M., M. Kim, A. M. H. Wong, and G. V. Eleftheriades, "Huygens' Metasurfaces from microwaves to optics: A review," Nanophotonics, Vol. 7, 1207-1231, 2018.
doi:10.1515/nanoph-2017-0117 Google Scholar
17. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley Interscience, John Wiley & Sons, 2006, ISBN 978-0-471-66985-2.
18. Epstein, A. and G. V. Eleftheriades, "Huygens' metasurfaces via the equivalence principle: Design and applications," Journal of the Optical Society of America B, Vol. 33, No. 2, A31-A50, 2016.
doi:10.1364/JOSAB.33.000A31 Google Scholar
19. Joseph, P., S. Wong, M. Selvanayagam, and G. V. Eleftheriades, "Design of unit cells and demonstration of methods for synthesizing huygens metasurfaces," Photonics and Nanostructures: Fundamentals and Applications, Vol. 12, No. 4, 360-375, 2014.
doi:10.1016/j.photonics.2014.07.001 Google Scholar
20. Lavigne, G., K. Achouri, V. S. Asadchy, S. A. Tretyakov, and C. Caloz, "Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1321-1330, 2018.
doi:10.1109/TAP.2018.2793958 Google Scholar
21. Capolino, F., A. Vallecchi, and M. Albani, "Equivalent transmission line model with a lumped X-circuit for a metalayer made of pairs of planar conductors," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 852-861, 2013.
doi:10.1109/TAP.2012.2225013 Google Scholar
22. Rabinovich, O. and A. Epstein, "Analytical design of Printed-Circuit-Board (PCB) metagratings for perfect anomalous reflection," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4086-4095, 2018.
doi:10.1109/TAP.2018.2836379 Google Scholar
23. Hadi Badri, S., H. Soofi, and S. SaeidNahaei, "Thermally reconfigurable extraordinary terahertz transmission using vanadium dioxide," Journal of the Optical Society of America B, Vol. 39, No. 6, 1614-1621, 2022.
doi:10.1364/JOSAB.459639 Google Scholar
24. Hadi Badri, S., M. M. Gilarlue, S. SaeidNahaei, and J. S. Kim, "Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material," Journal of Optics, Vol. 24, No. 2, 2022. Google Scholar
25. Bengin, V. C., V. Radonic, and B. Jokanovic, "Fractal geometries of complementary split-ring resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 10, 2312-2321, 2008.
doi:10.1109/TMTT.2008.2003522 Google Scholar
26. Moeini, S., "Homogenization of fractal metasurface based on extension of Babinet-Booker's principle," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 1061-1065, 2019.
doi:10.1109/LAWP.2019.2909134 Google Scholar
27. Abdelrahman, A. H., F. Yang, A. Z. Elsherbeni, and P. Nayeri, Analysis and Design of Transmitarray Antennas, Morgan & Claypool, 2017, ISBN: 9781627058742.
doi:10.1007/978-3-031-01541-0
28. Abdelrahman, A. H., F. Yang, and A. Z. Elsherbeni, "Transmission phase limit of multilayer frequency selective surfaces for transmitarray designs," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 690-697, 2014.
doi:10.1109/TAP.2013.2289313 Google Scholar
29. Ryan, C. G. M., M. Reza, J. Shaker, J. R. Bray, Y. M. M. Antar, and A. Ittipiboon, "A wideband transmitarray using dual-resonant double square rings," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1486-1493, 2010.
doi:10.1109/TAP.2010.2044356 Google Scholar
30. Milne, R., "Dipole array lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 4, 704-712, 1982.
doi:10.1109/TAP.1982.1142835 Google Scholar
31. Benzaouia, M., J. D. Joannopoulos, S. G. Johnson, and A. Karalis, "Analytical criteria for designing multiresonance filters in scattering systems, with application to microwave metasurfaces," Physical Review Applied, Vol. 17, No. 3, 2022.
doi:10.1103/PhysRevApplied.17.034018 Google Scholar
32. Xu, Y. and M. He, "Design of multilayer frequency-selective surfaces by equivalent circuit method and basic building blocks," International Journal of Antennas and Propagation, Vol. 2019, Article ID 9582564, 13 pages, 2019. Google Scholar
33. Olk, A. E. and D. A. Powell, "Accurate metasurface synthesis incorporating near field coupling effects," Physical Review Applied, Vol. 11, 2019. Google Scholar
34., https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.
35. Manafi, S. and H. Deng, "Design of a small modified Minkowski fractal antenna for passive deep brain stimulation implants," International Journal of Antennas and Propagation, Vol. 2014, No. 12, Article ID 749043, 9 pages, 2014. Google Scholar
36. Freaky, D. A., "Conversions between S, Z, Y, h, ABCD and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 205-211, 1994.
doi:10.1109/22.275248 Google Scholar
37. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2790-2800, 2022.
doi:10.1109/TAP.2021.3138256 Google Scholar
38. Qiu, S., Q. Guo, and Z. Li, "Tunable frequency selective surface based on a sliding 3D-printed inserted dielectric," IEEE Access, Vol. 9, 19743-19748, 2021.
doi:10.1109/ACCESS.2021.3054434 Google Scholar
39. Jin, C., Q. Lv, B. Zhang, J. Liu, S. An, Z. S. He, and Z. Shen, "Ultra-wide-angle bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5673-5681, 2021.
doi:10.1109/TAP.2021.3061144 Google Scholar