1. Bi, G., Q. Wang, D. Ding, et al. "Multi-optimization objective online tracking-based parameter self- tuning method for sensorless PMSM drives," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 1390-1402, Mar. 2023.
doi:10.1109/TTE.2022.3200368 Google Scholar
2. Zhang, R., Z. Yin, N. Du, J. Liu, and X. Tong, "Robust adaptive current control of a 1.2-MW direct-drive PMSM for traction drives based on internal model control with disturbance observer," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1466-1481, Sept. 2021.
doi:10.1109/TTE.2021.3058012 Google Scholar
3. Murshid, S. and B. Singh, "Implementation of PMSM drive for a solar water pumping system," IEEE Transactions on Industry Applications, Vol. 55, No. 5, 4956-4964, Sept.-Oct. 2019.
doi:10.1109/TIA.2019.2924401 Google Scholar
4. Wang, G., M. Valla, and J. Solsona, "Position sensorless permanent magnet synchronous machine drives --- A review," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5830-5842, Jul. 2020.
doi:10.1109/TIE.2019.2955409 Google Scholar
5. Wang, W., H. Yan, Y. Xu, et al. "New three-phase current reconstruction for PMSM drive with hybrid space vector pulsewidth modulation technique," IEEE Transactions on Power Electronics, Vol. 36, No. 1, 662-673, Jan. 2021.
doi:10.1109/TPEL.2020.2997986 Google Scholar
6. Casadei, D., F. Profumo, G. Serra, and A. Tani, "FOC and DTC: two viable schemes for induction motors torque control," IEEE Transactions on Power Electronics, Vol. 17, No. 5, 779-787, Sept. 2002.
doi:10.1109/TPEL.2002.802183 Google Scholar
7. Zhang, X. and Y. He, "Direct voltage-selection based model predictive direct speed control for PMSM drives without weighting factor," IEEE Transactions on Power Electronics, Vol. 34, No. 8, 7838-7851, Aug. 2019.
doi:10.1109/TPEL.2018.2880906 Google Scholar
8. Yu, F., S. Zhao, Z. Tian, and X. Wu, "Model predictive flux control of semicontrolled open-winding PMSG with circulating current elimination," IEEE Transactions on Industrial Informatics, Vol. 17, No. 2, 1438-1448, Feb. 2021.
doi:10.1109/TII.2020.2994086 Google Scholar
9. Ge, L., J. Zhong, J. Huang, N. Jiao, S. Song, and R. W. De Doncker, "A novel model predictive torque control of SRMs with low measurement effort," IEEE Transactions on Industrial Electronics, Vol. 70, No. 4, 3561-3570, Apr. 2023.
doi:10.1109/TIE.2022.3179564 Google Scholar
10. Zhang, Y., D. Xu, and L. Huang, "Generalized multiple-vector-based model predictive control for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 65, No. 12, 9356-9366, Dec. 2018.
doi:10.1109/TIE.2018.2813994 Google Scholar
11. Zhang, X. and B. Hou, "Double vectors model predictive torque control without weighting factor based on voltage tracking error," IEEE Transactions on Power Electronics, Vol. 33, No. 3, 2368-2380, Mar. 2018.
doi:10.1109/TPEL.2017.2691776 Google Scholar
12. Osman, I., D. Xiao, K. S. Alam, S. M. S. I. Shakib, M. P. Akter, and M. F. Rahman, "Discrete space vector modulation-based model predictive torque control with no suboptimization," IEEE Transactions on Industrial Electronics, Vol. 67, No. 10, 8164-8174, Oct. 2020.
doi:10.1109/TIE.2019.2946559 Google Scholar
13. Zhang, X. and Z. Zhao, "Multi-stage series model predictive control for PMSM drives," IEEE Transactions on Vehicular Technology, Vol. 70, No. 7, 6591-6600, Jul. 2021.
doi:10.1109/TVT.2021.3086532 Google Scholar
14. Sun, X., T. Li, M. Yao, G. Lei, Y. Guo, and J. Zhu, "Improved finite-control-set model predictive control with virtual vectors for PMSHM drives," IEEE Transactions on Energy Conversion, Vol. 37, No. 3, 1885-1894, Sept. 2022. Google Scholar
15. Zhang, Y., D. Xu, J. Liu, S. Gao, and W. Xu, "Performance improvement of model-predictive current control of permanent magnet synchronous motor drives," IEEE Transactions on Industry Applications, Vol. 53, No. 4, 3683-3695, Jul.-Aug. 2017.
doi:10.1109/TIA.2017.2690998 Google Scholar
16. Zhao, W., H. Wang, T. Tao, and D. Xu, "Model Predictive torque control of five-phase PMSM by using double virtual voltage vectors based on geometric principle," IEEE Transactions on Transportation Electrification, Vol. 7, No. 4, 2635-2644, Dec. 2021.
doi:10.1109/TTE.2021.3063193 Google Scholar
17. Kang, S.-W., J.-H. Soh, and R.-Y. Kim, "Symmetrical three-vector-based model predictive control with deadbeat solution for IPMSM in rotating reference frame," IEEE Transactions on Industrial Electronics, Vol. 67, No. 1, 159-168, Jan. 2020.
doi:10.1109/TIE.2018.2890490 Google Scholar
18. Wang, C., J. Ji, H. Tang, T. Tao, and W. Zhao, "Improved model predictive current control for linear vernier permanent-magnet motor with efficient voltage vectors selection," IEEE Transactions on Industrial Electronics, Vol. 70, No. 3, 2833-2842, Mar. 2023.
doi:10.1109/TIE.2022.3169827 Google Scholar
19. Yu, F., K. Li, Z. Zhu, and X. Liu, "An over-modulated model predictive current control for permanent magnet synchronous motors," IEEE Access, Vol. 10, 40391-40401, 2022.
doi:10.1109/ACCESS.2022.3166511 Google Scholar
20. Gu, M., Y. Yang, M. Fan, et al. "Finite control set model predictive torque control with reduced computation burden for PMSM based on discrete space vector modulation," IEEE Transactions on Energy Conversion, Vol. 38, No. 1, 703-712, Mar. 2023.
doi:10.1109/TEC.2022.3211569 Google Scholar
21. Jin, T., H. Song, D. L. Mon-Nzongo, P. G. Ipoum-Ngome, H. Liao, and M. Zhu, "Virtual three-level model predictive flux control with reduced computational burden and switching frequency for induction motors," IEEE Transactions on Power Electronics, Vol. 38, No. 2, 1571-1582, Feb. 2023.
doi:10.1109/TPEL.2022.3210388 Google Scholar
22. Li, X., Z. Xue, L. Zhang, and W. Hua, "A low-complexity three-vector-based model predictive torque control for SPMSM," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 13002-13012, Nov. 2021.
doi:10.1109/TPEL.2021.3079147 Google Scholar
23. Xu, B., Q. Jiang, W. Ji, and S. Ding, "An improved three-vector-based model predictive current control method for surface-mounted PMSM drives," IEEE Transactions on Transportation Electrification, Vol. 8, No. 4, 4418-4430, Dec. 2022.
doi:10.1109/TTE.2022.3169515 Google Scholar
24. Petkar, S. G. and V. K. Thippiripati, "Effective multivector-operated predictive current control of PMSM drive with reduced torque and flux ripple," IEEE Transactions on Transportation Electrification, Vol. 9, No. 2, 2217-2227, Jun. 2023.
doi:10.1109/TTE.2022.3218747 Google Scholar
25. Amiri, M., J. Milimonfared, and D. A. Khaburi, "Predictive torque control implementation for induction motors based on discrete space vector modulation," IEEE Transactions on Industrial Electronics, Vol. 65, No. 9, 6881-6889, Sept. 2018.
doi:10.1109/TIE.2018.2795589 Google Scholar
26. Wang, Y., X. Wang, W. Xie, et al. "Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, May 2017.
doi:10.1109/TIE.2017.2652338 Google Scholar
27. Yang, Y., H. Wen, M. Fan, M. Xie, and R. Chen, "Fast finite-switching-state model predictive control method without weighting factors for T-type three-level three-phase inverters," IEEE Transactions on Industrial Informatics, Vol. 15, No. 3, 1298-1310, Mar. 2019.
doi:10.1109/TII.2018.2815035 Google Scholar
28. Park, D.-M. and K.-H. Kim, "Parameter-independent online compensation scheme for dead time and inverter nonlinearity in IPMSM drive through waveform analysis," IEEE Transactions on Industrial Electronics, Vol. 61, No. 2, 701-707, Feb. 2014.
doi:10.1109/TIE.2013.2251737 Google Scholar
29. Leggate, D. and R. J. Kerkman, "Pulse-based dead-time compensator for PWM voltage inverters," IEEE Transactions on Industrial Electronics, Vol. 44, No. 2, 191-197, Apr. 1997.
doi:10.1109/41.564157 Google Scholar
30. Li, X., Z. Xue, X. Yan, et al. "Voltage vector rapid screening-based three-vector model predictive torque control for permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 37, No. 7, 1666-1678, 2022. Google Scholar