1. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, 1995.
doi:10.1049/el:19950950 Google Scholar
2. Wong, K.-L. and W.-H. Hsu, "Broadband triangular microstrip antenna with U-shaped slot," Electronics Letters, Vol. 33, No. 25, 2085-2087, 1997.
doi:10.1049/el:19971472 Google Scholar
3. Guo, Y. X., K. M. Luk, and K. F. Lee, "L-probe proximity-fed short-circuited patch antennas," Electronics Letters, Vol. 35, No. 24, 2069-2070, 1999.
doi:10.1049/el:19991446 Google Scholar
4. Tong, K. F., K. M. Luk, K. F. Lee, and R. Q. Lee, "A broad-band U-slot rectangular patch antenna on a microwave substrate," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 954-960, 2000.
doi:10.1109/8.865229 Google Scholar
5. Yen, M.-H., P. Hsu, and J.-F. Kiang, "Analysis of a CPW-fed slot ring antenna," Proc. APMC 2001 Int. Conf., 1267-1270, 2001. Google Scholar
6. Tehrani, H. and K. Chang, "Multifrequency operation of microstrip-fed slot-ring antennas on thin low-dielectric permittivity substrates," IEEE Trans. Antennas Propag., Vol. 50, No. 9, 1299-1308, Sep. 2002.
doi:10.1109/TAP.2002.800697 Google Scholar
7. Gao, G.-P., B. Hu, and J.-S. Zhang, "Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 567-570, May 2013.
doi:10.1109/LAWP.2013.2259790 Google Scholar
8. Li, Z., "Miniaturized design of a CPW-fed slot antennas using slits," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Oct. 2017. Google Scholar
9. Ripin, N., A. A. Sulaiman, N. Emileen, et al. "Miniaturization of printed monopole antenna through fractal geometry and partial cutting methods for UHF application," 2015 International Conference on Computer, Communications, and Control Technology (I4CT), Apr. 2015. Google Scholar
10. Salih, A. A. and M. S. Sharawi, "A dual band highly miniaturized patch antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 1783-1786, Mar. 2016.
doi:10.1109/LAWP.2016.2536678 Google Scholar
11. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199 Google Scholar
12. Chu, L. J., "Physical limitations on omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038 Google Scholar
13. Hansen, R. C., "Fundamental limitations in antennas," Proc. IEEE, Vol. 69, 170-182, Feb. 1981.
doi:10.1109/PROC.1981.11950 Google Scholar
14. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, 672-676, May 1996.
doi:10.1109/8.496253 Google Scholar
15. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455 Google Scholar
16. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828 Google Scholar
17. Foroozesh, N. A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702 Google Scholar
18. Alexopoulos, N. and D. Jackson, "Fundamental superstrate (cover) effect on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433 Google Scholar
19. Lee, R. Q. and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1298-1302, Aug. 1990.
doi:10.1109/8.56971 Google Scholar
20. Egashira, S. and E. Nishiyama, "Stacked microstrip antenna with wide bandwidth and high gain," IEEE Trans. Antennas Propag., Vol. 44, No. 11, 1533-1534, Nov. 1996.
doi:10.1109/8.542079 Google Scholar
21. Jagtap, S. D., R. K. Gupta, N. Chaskar, S. U. Kharche, and R. Thakare, "Gain and bandwidth enhancement of circularly polarized MSA using PRS and AMC layers," Progress In Electromagnetics Research C, Vol. 87, 107-118, 2018.
doi:10.2528/PIERC18072205 Google Scholar
22. Mehta, A. M., S. B. Deosarkar, and A. B. Nandgaonkar, "Gain and bandwidth enhancement of a CPW-fed bidirectional dumbbell shaped slot antenna using PRS," Progress In Electromagnetics Research Letters, Vol. 107, 159-167, 2022.
doi:10.2528/PIERL22091504 Google Scholar
23. Vaidya, A. R., R. K. Gupta, S. K. Mishra, et al. "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas and Wireless Propag. Lett., Vol. 13, 431-434, Mar. 2014.
doi:10.1109/LAWP.2014.2308926 Google Scholar
24. Jagtap, S., C. Anjali, and C. Nayana, et al., "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas and Wireless Propag. Lett., Vol. 17, 509-512, Mar. 2018.
doi:10.1109/LAWP.2018.2799873 Google Scholar
25. Foroozesh, A. and L. Shafai, "2-D truncated periodic leaky-wave antennas with reactive impedance surface ground," Proc. IEEE AP-S Int. Symp., 15-18, Albuquerque, NM, Jul. 9-14, 2006. Google Scholar
26. Liao, H.-P. and S.-Y. Chen, "Bandwidth and gain enhancement of CPW-fed slot antenna using a partially re ective surface formed by two-step tapered dipole unit cells," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019. Google Scholar
27. Zhou, E., Y. Cheng, F. Chen, H. Luo, and X. Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/PIER22062201 Google Scholar
28. Kumar, A., A. De, and R. K. Jain, "Gain enhancement using modified circular loop FSS loaded with slot antenna for sub-6 GHz 5G application," Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
doi:10.2528/PIERL21031108 Google Scholar
29. Paik, H., S. K. Mishra, C. M. Sai Kumar, and K. Premchand, "High performance CPW fed printed antenna with double layered frequency selective surface reflector for bandwidth and gain improvement," Progress In Electromagnetics Research Letters, Vol. 102, 47-55, 2022.
doi:10.2528/PIERL21101703 Google Scholar
30. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, e22505, Nov. 2020. Google Scholar
31. Cheng, Y.-F., X. Ding, X. Xu, X. Zhong, and C. Liao, "Design and analysis of a bow-tie slot-coupled wideband metasurface antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 18, No. 7, 1342-1346, Jul. 2019.
doi:10.1109/LAWP.2019.2916380 Google Scholar
32. Kanjanasit, K. and C. Wang, "A wideband resonant cavity antenna assembled using a micromachined CPW-fed patch source and a two-layer metamaterial superstrate," IEEE Trans. on Components, Packaging and Manufacturing Tech., Vol. 9, No. 6, 1142-1150, Jun. 2019.
doi:10.1109/TCPMT.2018.2870479 Google Scholar
33. Nikolova, N. K., M. Ravan, and R. K. Amineh, "Chapter Six --- Substrate integrated antennas on silicon," Advances in Imaging and Electron Physics, Vol. 174, 391-458, 2012.
doi:10.1016/B978-0-12-394298-2.00006-5 Google Scholar
34. Ethier, J. L. T. and D. A. McNamara, "Modal significance measure in characteristic mode analysis of radiating structures," Electronics Letters, Vol. 46, No. 2, 107-108, Jan. 2010.
doi:10.1049/el.2010.1245 Google Scholar
35. Newman, E. H., "Small antenna location synthesis using characteristic modes," IEEE Trans. Antennas Propag., Vol. 27, No. 4, 530-531, Jul. 1979.
doi:10.1109/TAP.1979.1142116 Google Scholar
36. Fang, S., L. Zhang, Y. Guan, et al. "A wideband Fabry-Perot cavity antenna with single-layer partially reflective surface," IEEE Antennas and Wireless Propag. Lett., Vol. 22, 412-416, Feb. 2023.
doi:10.1109/LAWP.2022.3214230 Google Scholar