1. HUAWEI "NB-IoT enables new business opportunities,", July 17, 2017, Available: http://www.huawei.com/minisite/IoT/img/nb_IoT_whitepaper_en.pdf.
doi:10.1016/j.cie.2022.108572 Google Scholar
2. Sneha, P. K. Malik, N. Bilandi, and A. Gupta, "Narrow band-IoT and long-range technology of IoT smart communication: Designs and challenges," Computers & Industrial Engineering, Vol. 172, 108572, 2022.
doi:10.1016/j.comnet.2020.107209 Google Scholar
3. Rastogi, E., N. Saxena, A. Roy, and D. R. Shin, "Narrowband internet of things: A comprehensive study," Computer Networks, Vol. 173, 107209, 2020.
doi:10.1016/j.icte.2017.12.005 Google Scholar
4. Mekki, K., E. Bajic, F. Chaxel, and F. Meyer, "A comparative study of LPWAN technologies for large-scale IoT deployment," ICT Express, Vol. 5, 1-7, 2019.
doi:10.1007/s10776-020-00482-8 Google Scholar
5. Malik, P. K., D. S. Wadhwa, and J. S. Khinda, "A survey of device to device and cooperative communication for the future cellular networks," International Journal of Wireless Information Networks, Vol. 27, 411-432, 2020.
doi:10.1109/ICCAKM46823.2020.9051554 Google Scholar
6. Gupta, N. P., P. K. Malik, and B. S. Ram, "A review on methods and systems for early breast cancer detection," International Conference on Computation, Automation and Knowledge Management (ICCAKM), 42-46, 2020.
doi:10.1007/s11277-021-09218-0 Google Scholar
7. Riaz, S., M. Khan, U. Javed, et al. "A miniaturized frequency reconfigurable patch antenna for IoT applications," Wireless Pers. Commun., Vol. 123, 1871-1881, 2022.
doi:10.1007/s11277-021-08837-x Google Scholar
8. Jeyakumar, P., P. Muthuchidambaranathan, and S. Shrinidhi, "A novel two port high isolation dual-polarized multiband sub-6 GHz MIMO antenna for IoT connected devices," Wireless Pers. Commun., Vol. 121, 2569-2587, 2021.
doi:10.2528/PIERC22051805 Google Scholar
9. Bukhari, B. and G. M. Rather, "Multiband compact MIMO antenna for cognitive radio, IoT and 5G New radio sub 6 GHz applications," Progress In Electromagnetics Research C, Vol. 121, 265-279, 2022.
doi:10.2528/PIER18060804 Google Scholar
10. Raad, H. K., "An UWB antenna array for flexible IoT wireless systems," Progress In Electromagnetics Research, Vol. 162, 109-121, 2018.
doi:10.1109/IEEECONF35879.2020.9330268 Google Scholar
11. Abdallah, M., A. P. Freundorfer, and Y. M. M. Antar, "A planar low-cost electrically small antenna for NB-IoT sensors," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 593-594, Montreal, QC, Canada, 2020.
doi:10.1109/R10-HTC54060.2022.9929726 Google Scholar
12. Hossen, M. S. and S. Noman, "On the development of multiband NB-IoT antenna for low-power wide area network terminal," 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC), 414-418, Hyderabad, India, 2022.
doi:10.1109/OJAP.2021.3073104 Google Scholar
13. Santamaria, L., F. Ferrero, R. Staraj, L. Lizzi, and , "Electronically pattern reconfigurable antenna for IoT applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 546-554, 2021. Google Scholar
14. Tangjitjetsada, M., T. Suangun, W. Chanwattanapong, C. Mahatthanajatuphat, K. Phimthai, and P. Akkaraekthalin, "A multiband tri-branch monopole antenna base on step impedance technique for WLAN, WiMAX, 5G technology, and IoT application," 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1-4, Nakhon Phanom, Thailand, 2023.
doi:10.1109/LAWP.2022.3230827 Google Scholar
15. Al-Omari, M., H. Attia, K. K. Qureshi, and S. I. M. Sheikh, "Design of frequency-reconfigurable antenna on dielectric and magnetic metamaterial composite substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 4, 943-947, April 2023.
doi:10.1088/1748-0221/15/02/P02021 Google Scholar
16. Lakrit, S., S. Das, B. T. P. Madhav, and K. Vasu Babu, "An octagonal star-shaped flexible UWB antenna with band-notched characteristics for WLAN applications," Journal of Instrumentation, Vol. 15, P02021, 2020.
doi:10.18280/ts.400231 Google Scholar
17. Sau, P. C., P. K. Sharma, T. J. V. S. Rao, E. K. Kumari, T. V. N. L. Aswini, S. Jindal, and D. Sharma, "A kagome crest fractal optimized quad-band antenna for wireless applications," Traitement du Signal, Vol. 40, No. 2, 719-726, 2023.
doi:10.18280/ts.370412 Google Scholar
18. El Yassini, A., M. A. Jallal, S. Ibnyaich, A. Zeroual, and S. Chabaa, "A miniaturized CPW-fed reconfigurable antenna with a single-dual band and an asymmetric ground plane for switchable band wireless applications," Traitement du Signal, Vol. 37, No. 4, 633-638, 2020.
doi:10.1109/TAP.2019.2957720 Google Scholar
19. Li, Y., Z. Zhao, Z. Tang, and Y. Yin, "Differentially fed, dual-band dual-polarized filtering antenna with high selectivity for 5G sub-6 GHz base station applications," IEEE Transactions on Antennas and Propagation, Vol. 68, 3231-3236, 2020.
doi:10.13164/re.2018.0085 Google Scholar
20. Darimireddy, N. K., R. Ramana Reddy, and A. Mallikarjuna Prasad, "Asymmetric triangular semi-elliptic slotted patch antennas for wireless applications," Radioengineering, Vol. 27, 85-93, 2018.
doi:10.2528/PIERC16092101 Google Scholar
21. Sharma, M., Y. K. Awasthi, and H. Singh, "Design of CPW-fed high rejection triple band-notch UWB antenna on silicon Substrate with diverse wireless applications," Progress In Electromagnetics Research C, Vol. 74, 19-30, 2017.
doi:10.1109/MAP.2017.2658346 Google Scholar
22. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [Wireless Corner]," IEEE Antennas and Propagation Magazine, Vol. 59, 162-170, 2017. Google Scholar
23. Sneha, P., K. Malik, and A. Alkhayyat, "Correction to: A shared patch MIMO antenna for NB-IoT applications," Low Power Architectures for IoT Applications. Springer Tracts in Electrical and Electronics Engineering, D. K. Sharma, R. Sharma, G. Jeon, Z. Polkowski, eds., Springer, Singapore, 2023.
doi:10.1002/mop.31420 Google Scholar
24. Asadpor, L. and M. Rezvani, "Multiband microstrip MIMO antenna with CSRR loaded for GSM and LTE applications," Microwave and Optical Technology Letters, Vol. 60, 3076-3080, 2018.
doi:10.1002/mmce.21222 Google Scholar
25. Chouhan, S., D. K. Panda, M. Gupta, and S. Singhal, "Meander line MIMO antenna for 5.8 GHz WLAN application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 4, e21222, 2018.
doi:10.1002/mop.31652 Google Scholar
26. Mohammad Saadh, A. W., R. Poonkuzhali, and T. Ali, "A miniaturized single-layered branched multiple-input multiple-output antenna for WLAN/WiMAX/INSAT applications," Microwave and Optical Technology Letters, Vol. 61, 1058-1064, 2019.
doi:10.1016/j.aeue.2020.153451 Google Scholar
27. Wang, M., L. Yang, and Y. Shi, "A dual-port microstrip rectenna for wireless energy harvest at LTE band," AEU --- International Journal of Electronics and Communications, Vol. 126, 153451, 2020.
doi:doi:10.1016/j.aeue.2020.153451 Google Scholar
28. Sneha, et al., "A metamaterial based monopole antenna for satellite based navigation applications," International Journal of Intelligent Communication, Computing, and Networks, Vol. 1, 10-14, 2020.
doi:10.3390/electronics10212612 Google Scholar
29. Singh, H., N. Mittal, A. Gupta, Y. Kumar, M. Wozniak, and A. Waheed, "Metamaterial integrated folded dipole antenna with low SAR for 4G, 5G, and NB-IoT applications," Electronics, Vol. 10, No. 21, 2612, 2021.
doi:doi:10.3390/electronics10212612 Google Scholar
30. Pourghorban Saghati, A., M. Azarmanesh, and R. Zaker, "A novel switchable single- and multifrequency triple-slot antenna for 2.4-GHz bluetooth, 3.5-GHz WiMax, and 5.8-GHz WLAN," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 534-537, 2010.
doi:doi:10.1109/LAWP.2010.2051401 Google Scholar
31. Kulkarni, J., "Multi-band printed monopole antenna conforming bandwidth requirement of GSM/WLAN/WiMAX standards," Progress In Electromagnetics Research Letters, Vol. 91, 59-66, 2020.
doi:doi:10.2528/PIERL20032104 Google Scholar
32. Birwal, A., S. Singh, B. K. Kanaujia, and S. Kumar, "Broadband CPW-fed circularly polarized antenna for IoT-based navigation system," International Journal of Microwave and Wireless Technologies, Vol. 11, 835-843, 2019.
doi:10.1017/S1759078719000461 Google Scholar
33. Birwal, A., S. Singh, B. K. Kanaujia, S. Kumar, and , "Broadband CPW-fed circularly polarized antenna for IoT-based navigation system," International Journal of Microwave and Wireless Technologies, Vol. 11, 835-843, 2019.
doi:10.4018/978-1-7998-9315-8.ch004 Google Scholar
34. Raveendra, M., U. Saravanakumar, V. Choppa, N. V. Palivela, and R. Teja, "Design and analysis of a tunable rectangular microstrip slot antenna for narrow band internet of things applications at 1800 MHz," Antenna Design for Narrowband IoT, 43-57, January 2022.
doi:10.3390/electronics11071074 Google Scholar
35. Hussain, R., S. I. Alhuwaimel, A. M. Algarni, K. Aljaloud, and N. Hussain, "A compact sub-GHz wide tunable antenna design for IoT applications," Electronics, Vol. 11, No. 7, 1074, 2022.
doi:10.3390/electronics10222766 Google Scholar
36. Abdulkawi, W. M., A. F. A. Sheta, I. Elshaey, and M. A. Alkanhal, "Design of low-profile single- and dual-band antennas for IoT applications," Electronics, Vol. 10, No. 22, 2766, 2021. Google Scholar
37. Sneha, P., K. Malik, and A. Gehlot, "A key-shaped ultra-wideband antenna for IoT applications," 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), 504-508, Greater Noida, India, 2023.
doi:10.3390/mi12030269 Google Scholar
38. Althuwayb, A. A., M. Alibakhshikenari, B. S. Virdee, P. Shukla, and E. Limiti, "Realizing UWB antenna array with dual and wide rejection bands using metamaterial and electromagnetic bandgaps techniques," Micromachines, Vol. 12, No. 3, 269, Basel, 2021. Google Scholar
39. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, 2005.
doi:10.1109/ITNEC48623.2020.9084751
40. Zhuo, L., H. Han, X. Shen, and H. Zhao, "A U-shaped wide-slot dual-band broadband NB-IoT antenna with a rectangular tuning stub," 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 123-128, 2020. Google Scholar