Vol. 141
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-01-29
Characteristic Mode Analysis for Microstrip Fed Conformal Metasurface Multiband Antenna
By
Progress In Electromagnetics Research C, Vol. 141, 1-11, 2024
Abstract
In this study, an optimal multi-band microstrip fed metasurface antenna is designed. Three by three non-uniform circular radiating cross slotted elements make up the antenna's metasurface. The metasurface is analyzed using characteristic mode analysis (CMA), and the Modal Significance (MS), Characteristic angle (CA), and Eigen Value (EV) curves are utilized to optimize the antenna's performance. In addition, surface currents are examined for the metasurface and patch using CMA, and the design incorporates microstrip feeding to excite the targeted frequency bands. With its resonance frequencies of 5.4 GHz, 8.9 GHz, 12.8 GHz, 15.9 GHz, and 19.8-31.58 GHz, the developed antenna has potential uses in 5G and wireless communications. The suggested antenna achieves a gain of 10.05 on average. The prototyped model conformability analysis of the antenna is also performed, and good matching with simulation results is found.
Citation
Kothakonda Durga Bhavani, Boddapati Taraka Phani Madhav, Usha Devi Yalavarthi, Yarlagadda Ramakrishna, and Mudunuri Padmanabha Raju, "Characteristic Mode Analysis for Microstrip Fed Conformal Metasurface Multiband Antenna," Progress In Electromagnetics Research C, Vol. 141, 1-11, 2024.
doi:10.2528/PIERC23122502
References

1. Lu, Xuyang, Chandrakanth Reddy Chappidi, Xue Wu, and Kaushik Sengupta, "Antenna preprocessing and element-pattern shaping for multi-band mmWave arrays: Multi-port receivers and antennas," IEEE Journal of Solid-State Circuits, Vol. 55, No. 6, 1455-1470, Jun. 2020.
doi:10.1109/JSSC.2020.2967544        Google Scholar

2. Zhang, Jiayi, Emil Björnson, Michail Matthaiou, Derrick Wing Kwan Ng, Hong Yang, and David J. Love, "Prospective multiple antenna technologies for beyond 5G," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 8, 1637-1660, Aug. 2020.
doi:10.1109/JSAC.2020.3000826        Google Scholar

3. Kumar, Arun, Raghav Khandelwal, Samarth Singh, Ambuj Kumar, and Arsh Makhdumi, "A review on gain enhancement techniques of microstrip antenna," 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), IEEE, 2021.

4. Kumar, Alok, Nancy Gupta, and P. C. Gautam, "Gain and bandwidth enhancement techniques in microstrip patch antennas - A review," International Journal of Computer Applications, Vol. 148, No. 7, 9-14, 2016.        Google Scholar

5. Islam, Md. Aminul and Nemai Chandra Karmakar, "A 4×4 dual polarized mm-Wave ACMPA array for a universal mm-Wave chipless RFID tag reader," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1633-1640, 2015.        Google Scholar

6. Kovitz, Joshua M. and Yahya Rahmat-Samii, "Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional CP patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4970-4979, Oct. 2014.
doi:10.1109/TAP.2014.2343239        Google Scholar

7. Zhang, Chen, Xiang-Yu Cao, Jun Gao, and Si-Jia Li, "Wideband high-gain and low scattering antenna using shared-aperture metamaterial superstrate," Radioengineering, Vol. 27, No. 2, 379-385, Jun. 2018.
doi:10.13164/re.2018.0379        Google Scholar

8. Li, Hai-Peng, Guang-Ming Wang, Xiang-Jun Gao, Jian-Gang Liang, and Hai-Sheng Hou, "An X/Ku-band focusing anisotropic metasurface for low cross-polarization lens antenna application," Progress In Electromagnetics Research, Vol. 159, 79-91, 2017.        Google Scholar

9. Minatti, Gabriele, Enrica Martini, and Stefano Maci, "Efficiency of metasurface antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1532-1541, Apr. 2017.
doi:10.1109/TAP.2017.2669728        Google Scholar

10. Lin, Feng Han and Zhi Ning Chen, "A method of suppressing higher order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1894-1902, Apr. 2018.
doi:10.1109/TAP.2018.2806401        Google Scholar

11. Liu, Sihao, Deqiang Yang, Yongpin Chen, Kai Sun, Xiaokun Zhang, and Yong Xiang, "Design of single-layer broadband omnidirectional metasurface antenna under single mode resonance," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6947-6952, Oct. 2021.
doi:10.1109/TAP.2021.3076262        Google Scholar

12. Li, Hai-Peng, Guang-Ming Wang, Jian-Gang Liang, and Xiang-Jun Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.        Google Scholar

13. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

14. Lui, Hoi Shun Antony and Trevor S. Bird, "Techniques for minimizing mutual coupling effects in arrays," Mutual Coupling Between Antennas, 325-356, 2021.        Google Scholar

15. Iluz, Zeev, Reuven Shavit, and Reuven Bauer, "Microstrip antenna phased array with electromagnetic bandgap substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1446-1453, 2004.        Google Scholar

16. Diallo, Aliou, Cyril Luxey, Philippe Le Thuc, Robert Staraj, and Georges Kossiavas, "Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals," IET Microwaves, Antennas & Propagation, Vol. 2, No. 1, 93-101, 2008.        Google Scholar

17. Li, Teng and Zhi Ning Chen, "Metasurface-based shared-aperture 5G S-/K-band antenna using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 6742–6750, 2018.        Google Scholar

18. Liu, Sihao, Deqiang Yang, and Jin Pan, "A low-profile broadband dual-circularly-polarized metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1395-1399, 2019.        Google Scholar

19. Li, Teng and Zhi Ning Chen, "A dual-band metasurface antenna using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5620-5624, 2018.        Google Scholar

20. Gao, Xi, Guowei Tian, Zhaoyu Shou, and Simin Li, "A low-profile broadband circularly polarized patch antenna based on characteristic mode analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 214-218, 2021.        Google Scholar

21. Gao, Guoping, Rui-Feng Zhang, Wen-Fei Geng, Hui-Jia Meng, and Bin Hu, "Characteristic mode analysis of a nonuniform metasurface antenna for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 8, 1355-1359, 2020.        Google Scholar

22. Wang, Kai, Wei Shao, Xiao Ding, Bing-Zhong Wang, and Baojun Jiang, "Design of high-gain metasurface antenna based on characteristic mode analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 661-665, 2022.        Google Scholar

23. Falcone, Francisco, Txema Lopetegi, M. A. G. Laso, J. D. Baena, Jordi Bonache, Miguel Beruete, R. Marqués, F. Martín, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, Vol. 93, No. 19, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401        Google Scholar

24. Garbacz, R. J., "Modal expansions for resonance scattering phenomena," Proceedings of the IEEE, Vol. 53, No. 8, 856-864, 1965.
doi:10.1109/PROC.1965.4064        Google Scholar

25. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, 1971.
doi:10.1109/TAP.1971.1139999        Google Scholar

26. Harrington, R. and J. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 629-639, Sep. 1971.        Google Scholar

27. Chen, Yikai and Chao-Fu Wang, Characteristic Modes: Theory and Applications in Antenna Engineering, John Wiley & Sons, Hoboken, NJ, USA, 2015.
doi:10.1002/9781119038900

28. Gao, Xi, Guowei Tian, Zhaoyu Shou, and Simin Li, "A low-profile broadband circularly polarized patch antenna based on characteristic mode analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 214-218, 2021.        Google Scholar

29. Adams, Jacob J., Simone Genovesi, Binbin Yang, and Eva Antonino-Daviu, "Antenna element design using characteristic mode analysis: Insights and research directions," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 32-40, 2022.        Google Scholar

30. Kollipara, Vamshi and Samineni Peddakrishna, "Circularly polarized antennas using characteristic mode analysis: A review," Advances in Technology Innovation, Vol. 7, No. 4, 242-257, 2022.        Google Scholar

31. Hamad, Ehab K. I. and Ahmed Abdelaziz, "Metamaterial superstrate microstrip patch antenna for 5G wireless communication based on the theory of characteristic modes," Journal of Electrical Engineering, Vol. 70, No. 3, 187-197, 2019.
doi:10.2478/jee-2019-0027        Google Scholar

32. Bhavani, Kothakonda Durga, Boddapati Taraka Phani Madhav, Sudipta Das, Niamat Hussain, Syed Samser Ali, and Kommanaboyina Vasu Babu, "Development of metamaterial inspired non-uniform circular array superstate antenna using characteristic mode analysis," Electronics, Vol. 11, No. 16, 2517, 2022.        Google Scholar

33. Pan, Y. M., P. F. Hu, X. Y. Zhang, and S. Y. Zheng, "A low-profile high-gain and wideband filtering antenna with metasurface," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2010-2016, 2016.        Google Scholar

34. Nasimuddin, X. Qing, and Zhi Ning Chen, "Metasurface-based low profile broadband circularly polarized antenna," Proceedings of TENCON 2017 - 2017 IEEE Region 10 Conference, 2378-2382, Penang, Malaysia, 2017.

35. Babu, Kommanaboyina Vasu, Sudipta Das, Gorre Naga Jyothi Sree, Boddapati Taraka Phani Madhav, Shobhit Kumar Kiritkumar Patel, and Juveriya Parmar, "Design and optimization of micro-sized wideband fractal MIMO antenna based on characteristic analysis of graphene for terahertz applications," Optical and Quantum Electronics, Vol. 54, No. 5, 281, 2022.        Google Scholar

36. Zhuang, Huawei, Honghao Tan, Changyong Liu, Fei Li, Wei Ding, Changbin Tian, and Fanmin Kong, "Dual-band metasurface antenna based on characteristic mode analysis," Progress In Electromagnetics Research M, Vol. 117, 71-81, 2023.
doi:10.2528/PIERM23041403        Google Scholar

37. CST Studio Suite, , CST Microwave Studio, http://www.cst.com, 2017.