Vol. 142
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-03-18
Optimization of Electromagnetic Thrust for Short Primary Unilateral Linear Induction Motor
By
Progress In Electromagnetics Research C, Vol. 142, 75-83, 2024
Abstract
In this paper, four different structures are proposed to optimize electromagnetic thrust for the primary and secondary pole linear induction motors. Firstly, the two-dimensional topology structure of the motor is established, and the correlation equation of electromagnetic thrust is established. Secondly, the electromagnetic thrust optimization of the primary structure of the motor is carried out by the chamfer method and trapezoidal structure method. Then, the secondary structure of the motor is slotted and mixed with different conductivity materials to optimize the electromagnetic thrust. At the same time, a motor model with high permeability under ideal conditions is proposed from the angle of relative permeability of secondary aluminum plate. Finally, the four optimized structures were simulated, and the changes of electromagnetic thrust, air gap density, and back electromotive force were analyzed. The simulation results fully verify the effectiveness of the four optimization structures proposed in this paper.
Citation
Cheng Wen, Junyi Chen, Jian Cui, Zhiping Wan, and Yujian Chang, "Optimization of Electromagnetic Thrust for Short Primary Unilateral Linear Induction Motor," Progress In Electromagnetics Research C, Vol. 142, 75-83, 2024.
doi:10.2528/PIERC23122904
References

1. Boldea, Ion, Lucian Nicolae Tutelea, Wei Xu, and Marcello Pucci, "Linear electric machines, drives, and MAGLEVs: An overview," IEEE Transactions on Industrial Electronics, Vol. 65, No. 9, 7504-7515, Sep. 2018.
doi:10.1109/TIE.2017.2733492

2. Lv, Gang, Zhixuan Zhang, Yaqing Liu, and Tong Zhou, "Characteristics analysis of linear synchronous motor integrated with propulsion, levitation, and guidance in high-speed Maglev system," IEEE Transactions on Transportation Electrification, Vol. 7, No. 4, 3185-3193, Dec. 2021.
doi:10.1109/TTE.2021.3073843

3. Boldea, Ion, Linear Electric Machines, Drives, and MAGLEVs Handbook, CRC Press, New York, NY, USA, 2013.

4. Lv, Gang, Yaqing Liu, Zhixuan Zhang, and Tong Zhou, "Characteristic analysis of coreless-type linear synchronous motor with the racetrack coils as secondary for EDS maglev train," IEEE/ASME Transactions on Mechatronics, Vol. 27, No. 6, 4654-4664, Dec. 2022.
doi:10.1109/TMECH.2022.3163520

5. Lv, Gang, Zhixuan Zhang, Yaqing Liu, and Tong Zhou, "Analysis of forces in linear synchronous motor with propulsion, levitation and guidance for high-speed Maglev," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 10, No. 3, 2903-2911, Jun. 2022.
doi:10.1109/JESTPE.2021.3065459

6. Xia, Wentao, Jiewei Zeng, Fengshan Dou, and Zhiqiang Long, "Method of combining theoretical calculation with numerical simulation for analyzing effects of parameters on the Maglev vehicle-bridge system," IEEE Transactions on Vehicular Technology, Vol. 70, No. 3, 2250-2257, Mar. 2021.
doi:10.1109/TVT.2021.3061280

7. Sun, Yougang, Junqi Xu, Guobin Lin, Wen Ji, and Lukun Wang, "RBF neural network-based supervisor control for Maglev vehicles on an elastic track with network time delay," IEEE Transactions on Industrial Informatics, Vol. 18, No. 1, 509-519, Jan. 2022.
doi:10.1109/TII.2020.3032235

8. Lv, Gang, Tong Zhou, Dihui Zeng, and Zhiming Liu, "Design of ladder-slit secondaries and performance improvement of linear induction motors for urban rail transit," IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 1187-1195, Feb. 2018.
doi:10.1109/TIE.2017.2726967

9. Lu, Qinfen, Bocheng Wu, Yihua Yao, Yiming Shen, and Qian Jiang, "Analytical model of permanent magnet linear synchronous machines considering end effect and slotting effect," IEEE Transactions on Energy Conversion, Vol. 35, No. 1, 139-148, Mar. 2020.
doi:10.1109/TEC.2019.2946278

10. Zhang, Zijiao, Meizhu Luo, Ji-An Duan, and Baoquan Kou, "Performance analysis of double-sided permanent magnet linear synchronous motor with quasi-sinusoidal ring windings," IEEE Transactions on Energy Conversion, Vol. 35, No. 3, 1465-1474, Sep. 2020.
doi:10.1109/TEC.2020.2981634

11. Fu, Dongshan, Yanliang Xu, Frederic Gillon, Jinlin Gong, and Nicolas Bracikowski, "Presentation of a novel transverse-flux permanent magnet linear motor and its magnetic field analysis based on Schwarz-Christoffel mapping method," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-4, Mar. 2018.
doi:10.1109/TMAG.2017.2756847

12. Liu, Wei, Hui Yang, and Heyun Lin, "A hybrid field analytical method of hybrid-magnetic-circuit variable flux memory machine considering magnet hysteresis nonlinearity," IEEE Transactions on Transportation Electrification, Vol. 7, No. 4, 2763-2774, Dec. 2021.

13. Carpita, Mauro, Tazio Beltrami, Christophe Besson, and Serge Gavin, "Multiphase active way linear motor: Proof-of-concept prototype," IEEE Transactions on Industrial Electronics, Vol. 59, No. 5, 2178-2188, May 2012.
doi:10.1109/TIE.2011.2163288

14. Kang, Gubae, Junha Kim, and Kwanghee Nam, "Parameter estimation scheme for low-speed linear induction motors having different leakage inductances," IEEE Transactions on Industrial Electronics, Vol. 50, No. 4, 708-716, Aug. 2003.
doi:10.1109/TIE.2003.814864

15. Choi, Jung-Hyun, Sanghoon Kim, Dong Sang Yoo, and Kyeong-Hwa Kim, "A diagnostic method of simultaneous open-switch faults in inverter-fed linear induction motor drive for reliability enhancement," IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, 4065-4077, Jul. 2015.
doi:10.1109/TIE.2014.2385044

16. Yan, Liang, Lei Zhang, Zongxia Jiao, Hongjie Hu, Chin-Yin Chen, and I-Ming Chen, "Armature reaction field and inductance of coreless moving-coil tubular linear machine," IEEE Transactions on Industrial Electronics, Vol. 61, No. 12, 6956-6965, Dec. 2014.
doi:10.1109/TIE.2014.2321336

17. Cao, Ruiwu, Ming Cheng, Chunting Chris Mi, and Wei Hua, "Influence of leading design parameters on the force performance of a complementary and modular linear flux-switching permanent-magnet motor," IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, 2165-2175, May 2014.
doi:10.1109/TIE.2013.2271603