Vol. 145
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-07-04
Key Practical Issues of the MoM Using in EMC Uncertainty Simulation
By
Progress In Electromagnetics Research C, Vol. 145, 21-26, 2024
Abstract
The Method of Moments (MoM) is widely used in Electromagnetic Compatibility (EMC) uncertain simulation due to its advantages, such as non-embedded simulation, high computational efficiency, and immunity from dimensional disasters. The theoretical research of the MoM has been relatively complete, but many of its key practical issues have not been fully discussed, which will result in the calculation accuracy in practical engineering applications falling short of theoretical expectations. With the help of the Feature Selective Validation (FSV) method, this paper analyzes and discusses two aspects. One is how to reasonably select the perturbation, and the other is the relationship between the uncertainty input size and the accuracy. By solving key practical issues of the MoM, the aim is to further promote it in the EMC field.
Citation
Jinjun Bai, Shaoran Gao, Shenghang Huo, and Bing Hu, "Key Practical Issues of the MoM Using in EMC Uncertainty Simulation," Progress In Electromagnetics Research C, Vol. 145, 21-26, 2024.
doi:10.2528/PIERC24042702
References

1. Manfredi, Paolo, Dries Vande Ginste, Daniël De Zutter, and Flavio G. Canavero, "Generalized decoupled polynomial chaos for nonlinear circuits with many random parameters," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 8, 505-507, Aug. 2015.

2. Xie, Haiyan, John F. Dawson, Jiexiong Yan, Andy C. Marvin, and Martin P. Robinson, "Numerical and analytical analysis of stochastic electromagnetic fields coupling to a printed circuit board trace," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 4, 1128-1135, Aug. 2020.

3. Gibson, Walton C., The Method of Moments in Electromagnetics, Chapman and Hall/CRC, 2021.
doi:10.1201/9780429355509

4. Chew, Weng, Mei-Song Tong, and H. Bin, Integral Equation Methods for Electromagnetic and Elastic Waves, Springer Nature, 2022.

5. Manfredi, Paolo and Flavio G. Canavero, "General decoupled method for statistical interconnect simulation via polynomial chaos," 2014 IEEE 23rd Conference on Electrical Performance of Electronic Packaging and Systems, 25-28, Portland, OR, USA, 2014.

6. Spadacini, Giordano and Sergio A. Pignari, "Numerical assessment of radiated susceptibility of twisted-wire pairs with random nonuniform twisting," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 5, 956-964, Oct. 2013.

7. Wang, Tianhao, Yinhan Gao, Le Gao, Chang-Ying Liu, Juxian Wang, and Zhanyang An, "Statistical analysis of crosstalk for automotive wiring harness via polynomial chaos method," Journal of the Balkan Tribological Association, Vol. 22, No. 2, 1503-1517, Feb. 2016.

8. Edwards, Robert Stephen, "Uncertainty analyses in computational electromagnetism," University of York, 2009.

9. Edwards, Robert S., Andrew C. Marvin, and Stuart J. Porter, "Uncertainty analyses in the finite-difference time-domain method," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 155-163, Feb. 2010.

10. Mitsufuji, Kenta, Masahito Nambu, Katsuhiro Hirata, and Fumikazu Miyasaka, "Numerical method for the ferromagnetic granules utilizing discrete element method and method of moments," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-4, Mar. 2018.

11. Bai, Jinjun, Gang Zhang, Lixin Wang, and Tianhao Wang, "Uncertainty analysis in EMC simulation based on improved method of moments," Applied Computational Electromagnetics Society Journal, Vol. 31, No. 1, 66-71, Jan. 2016.

12. Bai, Jinjun, Mingzhao Wang, and Xiaolong Li, "Uncertainty analysis method of computational electromagnetics based on clustering method of moments," Progress In Electromagnetics Research M, Vol. 114, 37-47, 2022.
doi:10.2528/PIERM22071703

13. IEEE STD 1597.1-2008, "IEEE standard for validation of computational electromagnetics computer modeling and simulations," 1-41, 2008.

14. IEEE STD 1597.2-2010, "IEEE recommended practice for validation of computational electromagnetics computer modeling and simulations," 1-124, 2011.

15. Zhang, Gang, Alistair P. Duffy, Hugh Sasse, Lixin Wang, and Ricardo Jauregui, "Improvement in the definition of ODM for FSV," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 4, 773-779, Aug. 2013.

16. Bai, Jinjun, Gang Zhang, Lixin Wang, and Alistair Duffy, "Uncertainty analysis in EMC simulation based on Stochastic Collocation Method," 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), 930-934, Dresden, Germany, 2015.