Vol. 147
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-08-26
Linear-to-Circular Polarization Conversion Metasurfaces with Multibeam for Ka-Band Satellite Applications
By
Progress In Electromagnetics Research C, Vol. 147, 89-97, 2024
Abstract
In this paper, a transmissive linear-to-circular polarization conversion (LCPC) multibeam metasurface is presented, which shows promise for point-to-multipoint transmission in satellite communications under interference conditions. The unit cell consists of four identical metal layers and three dielectric substrates, where each metal layer includes a square ring and a cross-shaped structure. By altering the arm length of the cross-shaped structure, independent control of the phase of x- and y-polarized waves can be achieved. Thus, by keeping the amplitude of the x- and y-polarized waves equal and the phase difference at 90˚, LCPC is realized. Based on the multibeam superposition theorem, the metasurface array is arranged using four discrete elements with a phase gradient of 90˚. It can convert linearly polarized (LP) waves into right-handed circularly polarized (RHCP) waves and generate transmitted multibeam at predetermined angles and gain ratios. Three-beam LCPC metasurfaces with equal and unequal gain in the Ka-band (26 to 40 GHz) were demonstrated to validate the proposed unit cell and methods. The equal gain metasurface has an approximate 11% bandwidth for the 3 dB axial ratio (AR) and a 12% bandwidth for the 3 dB gain. Furthermore, at the center frequency of 30 GHz, the unequal gain metasurface achieves gains of 22.9 dBi, 19.7 dBi, and 17.3 dBi, respectively, with an AR of less than 2 dB for all three beams.
Citation
Jinfeng He, Honggang Hao, Ting Zhang, Dan Yin, and Zhilin Zou, "Linear-to-Circular Polarization Conversion Metasurfaces with Multibeam for Ka-Band Satellite Applications," Progress In Electromagnetics Research C, Vol. 147, 89-97, 2024.
doi:10.2528/PIERC24061102
References

1. You, Li, Ke Xin Li, Jiaheng Wang, Xiqi Gao, Xiang Gen Xia, and Bjrn Ottersten, "Massive MIMO transmission for LEO satellite communications," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 8, 1851-1865, 2020.
doi:10.1109/JSAC.2020.3000803

2. Yang, Jin, Shang Tong Chen, Mao Chen, Jun Chen Ke, Ming Zheng Chen, Cheng Zhang, Rui Yang, Xin Li, Qiang Cheng, and Tie Jun Cui, "Folded transmitarray antenna with circular polarization based on metasurface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 806-814, 2020.
doi:10.1109/TAP.2020.3016170

3. Takahashi, Masaki, Yuichi Kawamoto, Nei Kato, Amane Miura, and Morio Toyoshima, "Adaptive power resource allocation with multi-beam directivity control in high-throughput satellite communication systems," IEEE Wireless Communications Letters, Vol. 8, No. 4, 1248-1251, 2019.
doi:10.1109/LWC.2019.2912753

4. Mysore, Bhavani Shankar, Eva Lagunas, Symeon Chatzinotas, and Bjorn Ottersten, "Precoding for satellite communications: Why, how and what next?," IEEE Communications Letters, Vol. 25, No. 8, 2453-2457, 2021.
doi:10.1109/LCOMM.2021.3058359

5. Abdelrahman, Ahmed H., Payam Nayeri, Atef Z. Elsherbeni, and Fan Yang, "Single-feed quad-beam transmitarray antenna design," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 953-959, 2016.
doi:10.1109/TAP.2016.2517660

6. Ma, X., Y. Liao, H. Huang, and W. Zhang, "A dual-band circular polarization waveguide slot antenna for 5G communication," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 340-344, 2020.

7. Shao-He, Li, Jiu-Sheng Li, and Jian-Zhong Sun, "Terahertz wave front manipulation based on pancharatnam-berry coding metasurface," Optical Materials Express, Vol. 9, No. 3, 1118-1127, 2019.
doi:10.1364/OME.9.001118

8. Bao, Lei, Rui Yuan Wu, Xiaojian Fu, Qian Ma, Guo Dong Bai, Jing Mu, Ruizhe Jiang, and Tie Jun Cui, "Multi-beam forming and controls by metasurface with phase and amplitude modulations," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6680-6685, 2019.
doi:10.1109/TAP.2019.2925289

9. Sun, Qiang, Yong-Ling Ban, Xiao-Fei Li, Jun Hu, and Zaiping Nie, "A passive metasurface for gain enhancement of wide-angle millimeter-wave multibeam array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 6, 1316-1320, 2023.
doi:10.1109/LAWP.2023.3241284

10. Wang, Hong Bin, Yu Jian Cheng, and Zhi Ning Chen, "Dual-band miniaturized linear-to-circular metasurface polarization converter with wideband and wide-angle axial ratio," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 9021-9025, 2021.
doi:10.1109/TAP.2021.3083820

11. Chandra, Madhavi, Sambit Kumar Ghosh, M. Thottappan, and Somak Bhattacharyya, "A transmittive-type metasurface for dual-band linear to circular polarization conversion," 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 1674-1679, 2022.

12. Yang, Weixu, Ke Chen, Yilin Zheng, Kui Tang, Junming Zhao, and Yijun Feng, "Compact multibeam metasurface lens antenna with circular polarization for 5G millimeter-wave application," 2021 13th Global Symposium on Millimeter-waves & Terahertz (GSMM), 1-3, Nanjing, China, 2021.

13. Jiang, Zhi Hao, Lei Kang, Taiwei Yue, Wei Hong, and Douglas H. Werner, "Wideband transmit arrays based on anisotropic impedance surfaces for circularly polarized single-feed multibeam generation in the Q-band," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 217-229, 2019.
doi:10.1109/TAP.2019.2943343

14. Liu, Xiaosong, Zehong Yan, Enlin Wang, Xiaofei Zhao, Tianling Zhang, and Fangfang Fan, "Multibeam forming with arbitrary radiation power ratios based on a conformal amplitude --- phase-controlled metasurface," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 4, 3707-3712, 2023.
doi:10.1109/TAP.2023.3242836

15. Shukoor, Mohammad Abdul, Mandala Pavansuth Reddy, and Sukomal Dey, "Novel wideband single-layered substrate linear-to-circular metasurface enabled transmission type polarizer for K-/Ka-bands satellite applications," 2022 Asia-pacific Microwave Conference (APMC), 88-90, Yokohama, Japan, 2022.

16. Yang, Pei, Rui Yang, and Yachao Li, "Dual circularly polarized split beam generation by a metasurface sandwich-based Fabry-Perot resonator antenna in Ku-band," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 933-937, 2021.
doi:10.1109/LAWP.2021.3067387

17. Liu, Qing, Ming-Yao Xia, and Wen-Mei Zhang, "A compact circularly polarized multibeam antenna using defected polarization conversion metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 8, 1892-1896, 2023.
doi:10.1109/LAWP.2023.3269049