Vol. 151
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-12-11
A Novel Proof-of-Concept AI-Driven Approach for Advanced Electromagnetic Imaging
By
Progress In Electromagnetics Research C, Vol. 151, 25-31, 2025
Abstract
This paper introduces an artificial intelligence (AI) methodology designed to enhance the output of two-dimensional (2D) electromagnetic imaging systems, specifically tailored for the imaging of conductive objects utilizing inductive sensors. The core of our imaging system comprises a commercial data acquisition board, alongside custom-made multilayer planar coils developed by conventional printed circuit board technology. By leveraging recent advances in AI and machine learning, our approach significantly improves the resolution and clarity of electromagnetic images. The paper uses a multi-layer perceptron (MLP) classifier to process the raw electromagnetic data captured by the imaging system. These algorithms are trained to recognize patterns and anomalies in electromagnetic field data, which are often indicative of conductive objects. The enhanced imaging capability is demonstrated through a series of experiments that compare the AI-enhanced outputs with the ground truth.
Citation
Ali Ghaffarpour, Tahereh Vasei, Mahindra Ganesh, Reza K. Amineh, and Maryam Ravan, "A Novel Proof-of-Concept AI-Driven Approach for Advanced Electromagnetic Imaging," Progress In Electromagnetics Research C, Vol. 151, 25-31, 2025.
doi:10.2528/PIERC24101302
References

1. Ganesh, Mahindra, Maryam Ravan, and Reza K. Amineh, "Electromagnetic induction imaging at multiple depths with a single coil," IEEE Transactions on Instrumentation and Measurement, Vol. 70, No. 4502809, 1-9, 2021.

2. Peyton, A. J., Z. Z. Yu, G. Lyon, S. Al-Zeibak, J. Ferreira, J. Velez, F. Linhares, A. R. Borges, H. L. Xiong, N. H. Saunders, and M. S. Beck, "An overview of electromagnetic inductance tomography: Description of three different systems," Measurement Science and Technology, Vol. 7, No. 3, 261, 1996.

3. Griffiths, H., "Magnetic induction tomography," Measurement Science and Technology, Vol. 12, No. 8, 1126, 2001.

4. Ma, Lu, Hsin-Yu Wei, and Manuchehr Soleimani, "Planar magnetic induction tomography for 3D near subsurface imaging," Progress In Electromagnetics Research, Vol. 138, 65-82, 2013.

5. Guilizzoni, Roberta, Joseph C. Watson, Paul Bartlett, and Ferruccio Renzoni, "Imaging by electromagnetic induction with resonant circuits," Image Sensing Technologies: Materials, Devices, Systems, and Applications II, Vol. 9481, 135-146, 2015.

6. Eichardt, R., C. H. Igney, J. Kahlert, M. Hamsch, M. Vauhkonen, and J. Haueisen, "Sensitivity comparisons of cylindrical and hemi-spherical coil setups for magnetic induction tomography," World Congress on Medical Physics and Biomedical Engineering, 269-272, Munich, Germany, Sep. 2009.

7. Zolgharni, M., H. Griffiths, and P. D. Ledger, "Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: Numerical modelling," Physiological Measurement, Vol. 31, No. 8, S111, 2010.

8. Franceschini, S., M. Ambrosanio, F. Baselice, and V. Pascazio, "Neural networks for inverse problems: The microwave imaging case," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, Dusseldorf, Germany, 2021.

9. Ambrosanio, Michele, Stefano Franceschini, Maria Maddalena Autorino, and Vito Pascazio, "Convolutional neural networks for tomographic MIMO ground penetrating radar imaging," 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1-5, Bali, Indonesia, Nov. 2021.

10. Wei, Zhun and Xudong Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2019.

11. Li, Lianlin, Long Gang Wang, Fernando L. Teixeira, Che Liu, Arye Nehorai, and Tie Jun Cui, "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1819-1825, 2019.

12. Liu, Ruigang, Ye Li, Feng Fu, Fusheng You, Xuetao Shi, and Xiuzhen Dong, "Time-difference imaging of magnetic induction tomography in a three-layer brain physical phantom," Measurement Science and Technology, Vol. 25, No. 6, 065402, 2014.

13. Al Bataineh, Ali, Devinder Kaur, and Seyed Mohammad J. Jalali, "Multi-layer perceptron training optimization using nature inspired computing," IEEE Access, Vol. 10, 36963-36977, 2022.