Vol. 157
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-07-18
Integrated Adaptive Control of 2.45g Microwave Transceiver with Multi-Band Operation in Electrical Parameter Fluctuations Estimation
By
Progress In Electromagnetics Research C, Vol. 157, 227-237, 2025
Abstract
Adaptive control techniques are crucial in optimizing the performance of 2.45 GHz microwave transceivers amidst varying electrical parameters. These transceivers, integral to modern wireless communication systems, often encounter fluctuations in operating conditions that can impact signal quality and reliability. Adaptive control mechanisms enable real-time adjustment of transceiver parameters, ensuring consistent and efficient operation across diverse environments. This study addresses the adaptive control of a 2.45 GHz microwave transceiver in the presence of electrical parameter fluctuations, complemented by a multi-band antenna design aimed at minimizing losses. Electrical parameter fluctuations in transceivers can significantly affect performance and reliability, particularly in dynamic environments. The proposed approach integrates adaptive control algorithms to dynamically adjust transceiver parameters in response to fluctuations, ensuring optimal operational conditions. The integrated approach for adaptive control of a 2.45 GHz microwave transceiver, coupled with a multi-band antenna system optimized to reduce total harmonic distortion (THD). The study addresses the challenges posed by electrical parameter fluctuations in transceiver performance by employing adaptive control algorithms that dynamically adjust operational parameters. The multi-band antenna design, optimized through advanced modeling techniques, achieves a THD reduction of up to 20% across different frequency bands. Experimental validation demonstrates significant improvements in signal purity and transmission efficiency, showcasing the efficacy of this integrated approach in enhancing the reliability and performance of microwave communication systems in dynamic environments.
Citation
Ke Wang, Xiao Ning Li, Jing Peng, Chao Zou, Long Feng Tian, and Zhuohao Li, "Integrated Adaptive Control of 2.45g Microwave Transceiver with Multi-Band Operation in Electrical Parameter Fluctuations Estimation," Progress In Electromagnetics Research C, Vol. 157, 227-237, 2025.
doi:10.2528/PIERC24121301
References

1. Chantier, Nicolas and Julien Cochard, "Software-defined direct RF simultaneous sampling multi-band/service transceiver," Microwave Journal, Vol. 65, No. 12, 2022.

2. Malki, Mohamed, Li Yang, and Roberto Gómez-García, "Combined signal-interference/split-type microwave multi-band bandpass filters," IET Microwaves, Antennas & Propagation, Vol. 17, No. 7, 583-593, 2023.

3. Zhao, Xi-Bei, Feng Wei, Li Yang, and Roberto Gómez-García, "Two-layer-magic-t-based bandpass, quasi-bandstop, and dual-passband balanced filters with differential-/common-mode reflectionless behavior," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 4, 2267-2282, Apr. 2024.

4. Wen, Jincai, Rong Wang, Xu Wang, Wen Sun, and Lingling Sun, "Multi-band millimeter-wave circuits for spectrum aggregation in B5G era: A tutorial," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 71, No. 3, 1656-1662, 2023.

5. Gupta, Anupma, Vipan Kumar, Shonak Bansal, Mohammed H. Alsharif, Abu Jahid, and Ho-Shin Cho, "A miniaturized tri-band implantable antenna for ISM/WMTS/lower UWB/Wi-Fi frequencies," Sensors, Vol. 23, No. 15, 6989, 2023.
doi:10.3390/s23156989

6. Reza, Manuel, Malik Muhammad Haris Amir, Muhammad Imran, Gaurav Pandey, Federico Camponeschi, Salvatore Maresca, Filippo Scotti, Giovanni Serafino, Antonio Malacarne, Claudio Porzi, et al. "Multi-static multi-band synthetic aperture radar (SAR) constellation based on integrated photonic circuits," Electronics, Vol. 11, No. 24, 4151, 2022.

7. Beikmirza, Mohammadreza, Yiyu Shen, Leo C. N. de Vreede, and Morteza S. Alavi, "A wideband energy-efficient multi-mode CMOS digital transmitter," IEEE Journal of Solid-State Circuits, Vol. 58, No. 3, 677-690, 2023.

8. Zhang, Yi, Jian Pang, Zheng Li, Minzhe Tang, Yijing Liao, Ashbir Aviat Fadila, Atsushi Shirane, and Kenichi Okada, "A power-efficient CMOS multi-band phased-array receiver covering 24-71-GHz utilizing harmonic-selection technique with 36-dB inter-band blocker tolerance for 5G NR," IEEE Journal of Solid-State Circuits, Vol. 57, No. 12, 3617-3630, 2022.

9. Zhu, Sha, Xiaojie Fan, Xuhua Cao, Yunxin Wang, Ning Hua Zhu, Ming Li, and Wei Li, "Photonic generation and antidispersion transmission of background-free multiband arbitrarily phase-coded microwave signals," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 4, 2290-2298, 2022.

10. Cheng, Depeng, Qin Chen, Jing Feng, Xin Chen, Xujun Ma, and Lianming Li, "A compact 28/39 GHz dual-band concurrent/band-switching LNA for 5G multi-band multi-stream applications," 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 315-318, Washington, DC, USA, Jun. 2024.

11. Hahn, Yunsik, Jose I. Martinez-Lopez, Patrick Roblin, Ruwaybih Alsulami, Zoya Popovic, and Vanessa Chen, "Analysis and digital predistortion of in-band cross modulation in concurrent multi-band transmitters," IEEE Access, Vol. 10, 120462-120474, 2022.

12. Song, Minje, Hyunjong Choi, Youngjin Jung, Taehyun Lee, Gyudong Choi, Juseop Lee, and Minhyup Song, "Multiband microwave photonic filters with tunability and programmability via optical frequency comb shaping," Journal of Lightwave Technology, Vol. 41, No. 23, 7215-7222, 2023.

13. Liu, Lijuan, Di Peng, Songnian Fu, Yuncai Wang, and Yuwen Qin, "Multi-band microwave signals generation based on a photonic sampling with a flexible ultra-short pulse source," Optics Express, Vol. 30, No. 18, 32151-32161, 2022.

14. Alhamed, Abdulrahman, Oguz Kazan, Gökhan Gültepe, and Gabriel M. Rebeiz, "A multiband/multistandard 15-57 GHz receive phased-array module based on 4 × 1 beamformer IC and supporting 5G NR FR2 operation," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 3, 1732-1744, 2022.

15. Aboagye, Sylvester, Mohammad Amin Saeidi, Hina Tabassum, Yamin Tayyar, Ekram Hossain, Hong-Chuan Yang, and Mohamed-Slim Alouini, "Multi-band wireless communication networks: Fundamentals, challenges, and resource allocation," IEEE Transactions on Communications, Vol. 72, No. 7, 4333-4383, 2024.

16. Rahayu, V., "Design of multi-band microstrip antenna with rectangular patch for 2.3 GHz, 2.4 GHz, and 3.5 GHz frequencies," Journal of Physics: Conference Series, Vol. 2623, No. 1, 012018, 2023.

17. Deng, Ning, Liangjia Zong, Hengyun Jiang, Yuhua Duan, and Kai Zhang, "Challenges and enabling technologies for multi-band WDM optical networks," Journal of Lightwave Technology, Vol. 40, No. 11, 3385-3394, 2022.

18. Zhang, Haowen and Qiuze Yu, "Photonic approach to multi-band dual-chirp microwave waveform generation with quadruple bandwidth," Advances in Engineering Technology Research, Vol. 9, No. 1, 762-762, 2024.
doi:10.56028/aetr.9.1.762.2024