Vol. 153
Latest Volume
All Volumes
PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-02-22
High Accurate PMSM Computation Model Based on Strongly Coupled Magnetic Field and Multi-Turns Electric Winding Circuits Using the Time-Stepping Finite Element
By
Progress In Electromagnetics Research C, Vol. 153, 13-23, 2025
Abstract
The work presented in this paper has great significance in improving electromagnetic models based on the strong coupling between the magnetic and electric fields transient equations while considering a realistic random multi-turn stranded winding where eddy currents, proximity and skin effects occur. The space-time partial differential equations of electromagnetic field expressed in terms of magnetic vector potential under nonlinear (B-H) magnetic materials curves handled by the iterative Newton-Raphson (NR) algorithm are simultaneously coupled with the voltage fed multi-turns electric circuits equations based on Kirchhoff's voltage law for each turn coil current loop. The magnetic field-multi-turn electric circuit coupled model solved using the time-stepping finite element method (FEM) formulation is dedicated to highly accurate computation of electromagnetic-mechanical devices. The developed FEM tools implemented under Matlab software are used to the modeling of the permanent magnet synchronous motor (PMSM) behavior through the physical quantities such as magnetic flux density, electric current, electromagnetic torque, and angular velocity.
Citation
Tarik Merzouki, and M'hemed Rachek, "High Accurate PMSM Computation Model Based on Strongly Coupled Magnetic Field and Multi-Turns Electric Winding Circuits Using the Time-Stepping Finite Element," Progress In Electromagnetics Research C, Vol. 153, 13-23, 2025.
doi:10.2528/PIERC24122504
References

1. Gieras, Jacek F., Permanent Magnet Motor Technology: Design and Applications, 3rd Ed., 608, CRC Press, Boca Raton, 2009.
doi:10.1201/9781420064414

2. Gyselinck, Johan, Patrick Dular, Nelson Sadowski, Patrick Kuo-Peng, and Ruth V. Sabariego, "Homogenization of form-wound windings in frequency and time domain finite-element modeling of electrical machines," IEEE Transactions on Magnetics, Vol. 46, No. 8, 2852-2855, 2010.

3. Gyselinck, J., R. Sabariego, and P. Dular, "Time-domain homogenization of windings in 2-D finite element models," IEEE Transactions on Magnetics, Vol. 43, No. 4, 1297-1300, 2007.

4. Fu, W. N., S. L. Ho, H. L. Li, and H. C. Wong, "An improved nodal method for circuit and multi-slice magnetic field coupled finite element analysis," Electric Power Components and Systems, Vol. 32, No. 7, 671-689, 2004.

5. Zhang, Hongbin, Zhaoxin Wang, Minshuo Chen, Zhan Shen, Haitao Yu, and Zhike Xu, "Finite element analysis of electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator," Sensors, Vol. 25, No. 2, 452, 2025.
doi:10.3390/s25020452

6. Qiu, Hao, Shuhong Wang, Fengju Sun, Zhiguo Wang, and Naming Zhang, "Transient electromagnetic field analysis for the single-stage fast linear transformer driver with two different configurations using the finite-element method and finite integration technique," IEEE Transactions on Magnetics, Vol. 56, No. 4, 1-5, 2020.

7. Lehikoinen, Antti, Antero Arkkio, and Anouar Belahcen, "Reduced basis finite element modeling of electrical machines with multiconductor windings," IEEE Transactions on Industry Applications, Vol. 53, No. 5, 4252-4259, 2017.

8. Abdel-Razek, A., J. Coulomb, M. Feliachi, and J. Sabonnadiere, "Conception of an air-gap element for the dynamic analysis of the electromagnetic field in electric machines," IEEE Transactions on Magnetics, Vol. 18, No. 2, 655-659, 1982.

9. Abdel-Razek, A., J. Coulomb, M. Feliachi, and J. Sabonnadiere, "The calculation of electromagnetic torque in saturated electric machines within combined numerical and analytical solutions of the field equations," IEEE Transactions on Magnetics, Vol. 17, No. 6, 3250-3252, 1981.

10. Bianchi, Nicola, Electrical Machine Analysis Using Finite Elements, Taylor and Francis, New York, 2017.
doi:10.1201/9781315219295

11. Ho, Siu Lau, H. L. Li, W. N. Fu, and H. C. Wong, "A novel approach to circuit-field-torque coupled time stepping finite element modeling of electric machines," IEEE Transactions on Magnetics, Vol. 36, No. 4, 1886-1889, 2000.

12. Li, Yashu, "Finite element analysis of motor eccentric forces and effects on vibration," Texas University, Austin, USA, 2019.

13. Phyu, N. U., "Numerical analysis of a brushless permanent magnet DC motor using coupled systems," Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 2004.

14. Hanselman, Duane C., Brushless Permanent Magnet Motor Design, 2nd Ed., Magna Physics Publishing, Ohio, 2003.

15. Jabbar, M. A., Zhejie Liu, and Jing Dong, "Time-stepping finite-element analysis for the dynamic performance of a permanent magnet synchronous motor," IEEE Transactions on Magnetics, Vol. 39, No. 5, 2621-2623, 2003.

16. Valdivieso, Carlos A., Gérard Meunier, Brahim Ramdane, Johan Gyselinck, Christophe Guerin, and Ruth V. Sabariego, "Time-domain finite-element eddy-current homogenization of windings using foster networks and recursive convolution," IEEE Transactions on Magnetics, Vol. 56, No. 12, 1-8, 2020.