Vol. 154
Latest Volume
All Volumes
PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-04-09
Robust Mode Matching of Waveguide Discontinuities by Minimizing Mean-Squared Error
By
Progress In Electromagnetics Research C, Vol. 154, 175-182, 2025
Abstract
The Mode-Matching Method (MMM) is a numerical technique that can be used to calculate electromagnetic wave propagation through a stepped waveguide junction. We present a generalized approach to mode-matching that works by minimizing the mean-squared error (MSE) of electromagnetic boundary conditions. The process begins by expressing each component of the electromagnetic field profile as a finite summation of modes within each waveguide region. Given some arbitrary pair of mode profiles, we next calculate the squared-error of each boundary condition along the entire span of the junction. The squared error is then averaged across the junction, resulting in a single matrix-vector equation for MSE. That equation is finally differentiated with respect to the mode amplitudes, and the result is then set to zero. The solution is thus a field profile in each waveguide region that minimizes the MSE of electromagnetic boundary conditions.
Citation
James R. Nagel, and Karl Warnick, "Robust Mode Matching of Waveguide Discontinuities by Minimizing Mean-Squared Error," Progress In Electromagnetics Research C, Vol. 154, 175-182, 2025.
doi:10.2528/PIERC25012101
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.

2. Jin, J.-M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley-IEEE Press, 2014.

3. Guglielmi, M., Giuseppe Conciauro, and R. Sorrentino, Advanced Modal Analysis, 1st Ed., Wiley, 2000.

4. Wexler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 15, No. 9, 508-517, 1967.

5. Read, W. W., "An analytic series method for laplacian problems with mixed boundary conditions," Journal of Computational and Applied Mathematics, Vol. 209, No. 1, 22-32, 2007.

6. Nagel, James R., "An analytic model for stripline/microstrip potential using infinite series with mixed boundary conditions," Progress In Electromagnetics Research M, Vol. 107, 231-242, 2022.
doi:10.2528/PIERM21081604

7. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., Wiley, Hoboken, NJ, 2012.

8. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, Hoboken, NJ, 1999.

9. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2012.

10. Rothwell, Edward J., Jonathan L. Frasch, Sean M. Ellison, Premjeet Chahal, and Raoul O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.

11. Rohde & Schwarz, "Measurement of Dielectric Material Properties - RAC-0607-0019," Application Note, July 2012.

12. Jiang, Shaohua, Li Jin, Haoqing Hou, and Lin Zhang, "Polymer-based nanocomposites with high dielectric permittivity," Polymer-Based Multifunctional Nanocomposites and Their Applications, J. Z. G. Kenan Song, Chuntai Liu, ed., Ch. 8, 201-243, Elsevier, 2019.