Vol. 157
Latest Volume
All Volumes
PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-06-29
Design and Integration of a Flexible RFID UHF Antenna with a 3D Printed Fluid Channel for Liquids Sensing Applications
By
Progress In Electromagnetics Research C, Vol. 157, 65-73, 2025
Abstract
This article presents an innovative UHF RFID tag sensor featuring a flexible ring resonator dipole integrated with a fluidic channel. Leveraging the unique characteristics of the resonator dipole, the sensor demonstrates high sensitivity in detecting the dielectric properties of various liquids. The RFID integration facilitates wireless communication and remote monitoring, enabling real-time, continuous measurement of sensor data. The sensor's flexible design allows for easy attachment on the PLA fluid channel, enhancing its practical utility. Experimental results show a strong correlation with reference measurements obtained using traditional laboratory methods using VNA. The sensor achieves effective impedance matching up to 1 GHz, even without the presence of a liquid in the channel. Moreover, confining liquids with high dielectric constants within the channel broadens the operational range across the UHF RFID band, spanning 865 MHz to 928 MHz, and the wireless RFID tag sensor is well suited for applications requiring real-time analysis and continuous monitoring. The proposed flexible ring resonator dipole UHF RFID tag sensor, coupled with fluidic channel-based tuning, offers significant potential for applications such as chemical analysis of liquids. Its unique blend of flexibility, wireless data communication, and accurate dielectric characterization opens new avenues for noninvasive and remote sensing in liquid-based system.
Citation
Mohammed Ali Ennasar, Mohamed El Khamlichi, Youness Akazzim, Abdelmounaim Tachrifat, Mariem Aznabet, Otman El Mrabet, and Mohsine Khalladi, "Design and Integration of a Flexible RFID UHF Antenna with a 3D Printed Fluid Channel for Liquids Sensing Applications," Progress In Electromagnetics Research C, Vol. 157, 65-73, 2025.
doi:10.2528/PIERC25012106
References

1. Kim, Dae-Hyeong, Nanshu Lu, Rui Ma, Yun-Soung Kim, Rak-Hwan Kim, Shuodao Wang, Jian Wu, Sang Min Won, Hu Tao, Ahmad Islam, et al., "Epidermal electronics," Science, Vol. 333, No. 6044, 838-843, Aug. 2011.
doi:10.1126/science.1206157

2. Dobkin, D., The RF in RFID: Passive UHF RFID in Practice, 2nd Ed., Elsevier, Amsterdam, The Netherlands, 2013.

3. Ali, M. K. and T. Rahman, "Wireless RFID sensing for IoT applications," IEEE Sensors Journal, Vol. 18, No. 4, 1234-1241, Feb. 2018.
doi:10.3390/s18041234

4. Ennasar, Mohammed Ali, Otman El Mrabet, Kanjaa Mohamed, and Mohammad Essaaidi, "Design and characterization of a broadband flexible polyimide RFID tag sensor for NaCl and sugar detection," Progress In Electromagnetics Research C, Vol. 94, 273-283, 2019.

5. Wiltshire, Benjamin Daniel, Telnaz Zarifi, and Mohammad Hossein Zarifi, "Passive split ring resonator tag configuration for RFID-based wireless permittivity sensing," IEEE Sensors Journal, Vol. 20, No. 4, 1904-1911, Feb. 2020.

6. Vélez, Paris, Katia Grenier, Javier Mata-Contreras, David Dubuc, and Ferran Martin, "Highly-sensitive microwave sensors based on open complementary split ring resonators (OCSRRs) for dielectric characterization and solute concentration measurement in liquids," IEEE Access, Vol. 6, 48324-48338, 2018.

7. Seo, Yunsik, Muhammad Usman Memon, and Sungjoon Lim, "Microfluidic eighth-mode substrate-integrated-waveguide antenna for compact ethanol chemical sensor application," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3218-3222, Jul. 2016.

8. Virtanen, J., et al., "Wireless liquid sensing with dual-resonant UHF RFID tags," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 7, 2305-2313, Jul. 2012.

9. Bianco, G. M. and G. Marrocco, "Joint design of self-tuning UHF RFID antenna and microfluidic channel for liquid sensing," IEEE Journal of Radio Frequency Identification, Vol. 8, 58-67, Apr. 2024.
doi:10.1109/JRFID.2024.3389870

10. Bhattacharyya, R., F. V. Gonzalez, and P. Nikitin, "Material sensing using RAIN RFID tags with auto-tuning capabilities," IEEE Journal of Radio Frequency Identification, Vol. 9, 340-349, May 2025.
doi:10.1109/JRFID.2025.3575043

11. Rida, A., M. Tentzeris, and L. Yang, RFID-Enabled Sensor Design and Applications, Artech, 2010.

12. Tentzeris, M. and A. Rida, "Inkjet-printed RFID-enabled sensors: Towards real-world applications," IEEE Proceedings, Vol. 105, No. 1, 104-116, Jan. 2017.

13. Mohamadzade, B., R. B. V. B. Simorangkir, S. Maric, A. Lalbakhsh, K. P. Esselle, and R. M. Hashmi, "Recent developments and state of the art in flexible and conformal reconfigurable antennas," Electronics, Vol. 9, No. 9, 1375, Sep. 2020.
doi:10.3390/electronics9091375

14. Zhang, J., G. Y. Tian, A. M. J. Marindra, A. I. Sunny, and A. B. Zhao, "A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications," Sensors, Vol. 17, No. 2, 265, Feb. 2017.
doi:10.3390/s17020265

15. Ren, Y. J. and K. Chang, "Microfluidics-based reconfigurable liquid dielectric antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 773-780, Feb. 2012.

16. Kim, K. S., et al., "Flexible RFID tag antenna for liquid sensing," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 483-487, Jan. 2013.

17. https://www.nxp.com/products/rfid-nfc/ucode-rain-rfid-uhf/ucode-g2il-and-g2il-plus:SL3S1203_1213.

18. Salim, Ahmed and Sungjoon Lim, "Review of recent metamaterial microfluidic sensors," Sensors, Vol. 18, No. 1, 232, Jan. 2018.
doi:10.3390/s18010232

19. Huber, E., M. Mirzaee, J. Bjorgaard, M. Hoyack, S. Noghanian, and I. Chang, "Dielectric property measurement of PLA," 2016 IEEE International Conference on Electro Information Technology (EIT), 0788-0792, Grand Forks, ND, USA, May 2016.

20. El Khamlichi, M., A. Alvarez Melcon, O. El Mrabet, M. A. Ennasar, and J. Hinojosa, "Flexible UHF RFID tag for blood tubes monitoring," Sensors, Vol. 19, No. 22, 4903, 2019.
doi:10.3390/s19224903

21. Ennasar, M. A., I. Aznabet, O. El Mrabet, and M. Essaaidi, "Design and characterization of a compact single layer modified S-shaped tag antenna for UHF-RFID applications," Advanced Electromagnetics, Vol. 8, No. 1, 59-65, 2019.
doi:10.7716/aem.v8i1.845

22. Liu, Yueyang, Tian Dong, Xu Qin, Weijia Luo, Ning Leng, Yujing He, Yong Yuan, Ming Bai, Jingbo Sun, Ji Zhou, et al., "High-permittivity ceramics enabled highly homogeneous zero-index metamaterials for high-directivity antennas and beyond," Elight, Vol. 4, No. 1, 4, 2024.