Vol. 154
Latest Volume
All Volumes
PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-04-14
Graphene as a Phase Shifter Element for Reflectarray Beam-Steering at THz Frequencies
By
Progress In Electromagnetics Research C, Vol. 154, 203-211, 2025
Abstract
In Terahertz (THz) frequencies, using traditional phase delay components is extremely difficult and graphene has the potential to be used in THz. Graphene is typically used at less than λ/16 dimensions. However, it has the potential to change the properties of a unit cell in reflectarray and act as an electronic phase-shifting element at λ/2 dimensions. Therefore, this paper proposes the design and application of graphene in unit cells to develop reflectarray beam steering. A metal-graphene hybrid structure is proposed in this work for designing the reconfigurable reflectarray antenna (RRA). The unit cell operating at 1.025 THz frequency, consists of a thin graphene sheet as a phase-shifting element inside a golden ring, where graphene is used as the phase delay component. The variation in the chemical potential of graphene leads to changes in the reflection coefficient phase for each unit cell. A circular aperture array comprising a maximum of 489 elements shows a total of 80° beam-steering with side-lobe levels of less than -10 dB and a maximum gain of over 20 dBi. The -1 dB bandwidth of 12% was obtained at the centre frequency of 1025 GHz between 950 GHz and 1075 GHz. The aperture efficiency of the designed RRA is found to be 11%. This type of antenna could be an advent for the development of terahertz Reflecting Intelligent Surface (RIS).
Citation
Suhail Asghar Qureshi, Muhammad Ramlee Kamarudin, Yoshihide Yamada, Muhammad Inam Abbasi, Muhammad Hashim Dahri, Zuhairiah Zainal Abidin, and Nordin Ramli, "Graphene as a Phase Shifter Element for Reflectarray Beam-Steering at THz Frequencies," Progress In Electromagnetics Research C, Vol. 154, 203-211, 2025.
doi:10.2528/PIERC25021903
References

1. Yang, Jun, Pengjun Wang, Shuangyuan Sun, Ying Li, Zhiping Yin, and Guangsheng Deng, "A novel electronically controlled two-dimensional terahertz beam-scanning reflectarray antenna based on liquid crystals," Frontiers in Physics, Vol. 8, 576045, Oct. 2020.

2. You, Xiaolong, Rajour T. Ako, Wendy S. L. Lee, Mei Xian Low, Madhu Bhaskaran, Sharath Sriram, Christophe Fumeaux, and Withawat Withayachumnankul, "Terahertz reflectarray with enhanced bandwidth," Advanced Optical Materials, Vol. 7, No. 20, 1900791, 2019.

3. Niu, Tiaoming, Withawat Withayachumnankul, Benjamin S.-Y. Ung, Hakan Menekse, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux, "Experimental demonstration of reflectarray antennas at terahertz frequencies," Optics Express, Vol. 21, No. 3, 2875-2889, Feb. 2013.

4. Imaz-Lueje, Borja, Daniel R. Prado, Manuel Arrebola, and Marcos R. Pino, "Reflectarray antennas: A smart solution for new generation satellite mega-constellations in space communications," Scientific Reports, Vol. 10, No. 1, 21554, 2020.

5. Encinar, Jose A., Rafael Florencio, Manuel Arrebola, Miguel Alejandro Salas Natera, Mariano Barba, Juan E. Page, Rafael R. Boix, and Giovanni Toso, "Dual-polarization reflectarray in Ku-band based on two layers of dipole arrays for a transmit-receive satellite antenna with South American coverage," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 2, 149-159, Mar. 2018.

6. Abbasi, Muhammad Inam, Muhammad Yusof Ismail, and Muhammad Ramlee Kamarudin, "Development of a pin diode-based beam-switching single-layer reflectarray antenna," International Journal of Antennas and Propagation, Vol. 2020, No. 1, 8891759, Dec. 2020.

7. Luyen, Hung, Zongtang Zhang, John H. Booske, and Nader Behdad, "Wideband, beam-steerable reflectarray antennas exploiting electronically reconfigurable polarization-rotating phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4414-4425, 2022.

8. Nam, In-Joong, Seokmin Lee, and Dongho Kim, "Miniaturized beam reconfigurable reflectarray antenna with wide 3-D beam coverage," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2613-2622, Apr. 2022.

9. Perruisseau-Carrier, Julien and Anja K. Skrivervik, "Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360˚ phase range," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 138-141, 2008.

10. Meng, Xiaomin, Maziar Nekovee, and Dehao Wu, "The design and analysis of electronically reconfigurable liquid crystal-based reflectarray metasurface for 6G beamforming, beamsteering, and beamsplitting," IEEE Access, Vol. 9, 155564-155575, 2021.

11. Yang, Jun, Lu Xu, Guozhen Zhang, Rongxin Mao, Zhiping Yin, Hongbo Lu, Guangsheng Deng, and Ying Li, "Active continuous control of terahertz wave based on a reflectarray element-liquid crystal-grating electrode hybrid structure," Optics Express, Vol. 30, No. 10, 17361-17370, 2022.

12. Carrasco, Eduardo and Julien Perruisseau-Carrier, "Reflectarray antenna at terahertz using graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 253-256, 2013.

13. Capaz, R. B., "Grand challenges in graphene and graphite research," Frontiers in Carbon, Vol. 1, Oct. 2022.

14. Shi, Li Ping, Qing He Zhang, Shi Hui Zhang, Chao Yi, and Guang Xu Liu, "Efficient graphene reconfigurable reflectarray antenna electromagnetic response prediction using deep learning," IEEE Access, Vol. 9, 22671-22678, 2021.

15. Singh, Arjun, Michael Andrello, Erik Einarsson, Ngwe Thawdar, and Josep Miquel Jornet, "Design and operation of a smart graphene-metal hybrid reflectarray at THz frequencies," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, Denmark, Mar. 2020.

16. Chang, Zhuang, Ben You, Lin-Sheng Wu, Min Tang, Yao-Ping Zhang, and Jun-Fa Mao, "A reconfigurable graphene reflectarray for generation of vortex THz waves," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1537-1540, 2016.

17. Deng, Li, Yuanyuan Zhang, Jianfeng Zhu, and Chen Zhang, "Wide-band circularly polarized reflectarrayusing graphene-based pancharatnam-berry phase unit-cells for terahertz communication," Materials, Vol. 11, No. 6, 956, 2018.

18. Zainud-Deen, S. H., A. M. Mabrouk, and H. A. Malhat, "Frequency tunable graphene metamaterial reflectarray," Wireless Personal Communications, Vol. 103, 1849-1857, 2018.

19. Hassan, Ahmed A., Rania R. Elsharkawy, Demyana A. Saleeb, El-Sayed M. El-Rabie, and Ahmed S. Elkorany, "Single-beam graphene reflectarray for terahertz band communication," Analog Integrated Circuits and Signal Processing, Vol. 112, No. 3, 517-525, 2022.

20. Alaee, Rasoul, Mohamed Farhat, Carsten Rockstuhl, and Falk Lederer, "A perfect absorber made of a graphene micro-ribbon metamaterial," Optics Express, Vol. 20, No. 27, 28017-28024, 2012.

21. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nature Materials, Vol. 6, No. 3, 183-191, Mar. 2007.

22. Xiao, Binggang, Mingyue Gu, Kang Qin, and Sanshui Xiao, "Absorption enhancement in graphene with an efficient resonator," Optical and Quantum Electronics, Vol. 49, 1-8, 2017.

23. Armaghani, Sahar, Shiva Khani, and Mohammad Danaie, "Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect," Superlattices and Microstructures, Vol. 135, 106244, 2019.

24. Zhou, Runhua, Tingting Jiang, Zhen Peng, Zhenyuan Li, Min Zhang, Shixing Wang, Ling Li, Huawei Liang, Shuangchen Ruan, and Hong Su, "Tunable broadband terahertz absorber based on graphene metamaterials and VO2," Optical Materials, Vol. 114, 110915, 2021.

25. Bolotin, K. I., K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Communications, Vol. 146, No. 9-10, 351-355, 2008.

26. Jiao, Zhen and Harold J. W. Zandvliet, "Determination of the Fermi velocity of graphene on MoS2 using dual mode scanning tunneling spectroscopy," Applied Physics Letters, Vol. 118, No. 16, 2021.

27. Yadav, Rajesh, Vinay Shankar Pandey, and Preeti Verma, "Nano-scaled graphene plasmonic-based vanadium dioxide Yagi-Uda array MIMO antenna for terahertz applications," Plasmonics, Vol. 19, 3345-3358, 2024.

28. Bansal, R., "Antenna theory; Analysis and design," Proceedings of the IEEE, Vol. 72, No. 7, 989-990, Jul. 1984.

29. Wang, Tongling, Yuping Zhang, Huiyun Zhang, and Maoyong Cao, "Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial," Optical Materials Express, Vol. 10, No. 2, 369-386, 2020.

30. Ghosh, Sambit Kumar, Santanu Das, and Somak Bhattacharyya, "Graphene-based metasurface for tunable absorption and transmission characteristics in the near mid-infrared region," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4600-4612, Jun. 2022.

31. Wang, Bingnan, Aydin Sadeqi, Rui Ma, Pu Wang, Wataru Tsujita, Kota Sadamoto, Yoshitsugu Sawa, Hojatollah Rezaei Nejad, Sameer Sonkusale, Cheng Wang, Mina Kim, and Ruonan Han, "Metamaterial absorber for THz polarimetric sensing," Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI, Vol. 10531, 170-176, Feb. 2018.

32. Du, Yixuan, Wei Wei, Xiaowei Zhang, and Yunbo Li, "Tuning metamaterials nanostructure of Janus gold nanoparticle film for surface-enhanced Raman scattering," The Journal of Physical Chemistry C, Vol. 122, No. 14, 7997-8002, Apr. 2018.

33. Saeed, Maryam, Yousef Alshammari, Shereen A. Majeed, and Eissa Al-Nasrallah, "Chemical vapour deposition of graphene --- Synthesis, characterisation, and applications: A review," Molecules, Vol. 25, No. 17, 3856, Aug. 2020.

34. Hernández, A. Roberto Ruiz, A. Gutierrez Cruz, and J. Campos-Delgado, "Chemical vapor deposition synthesis of graphene on copper foils," Graphene --- A Wonder Material for Scientists and Engineers, IntechOpen, 2023.

35. Wu, Zehao, Xuewei Zhang, Atanu Das, Jinglan Liu, Zhenxing Zou, Zilong Zhang, Yang Xia, Pei Zhao, and Hongtao Wang, "Step-by-step monitoring of CVD-graphene during wet transfer by Raman spectroscopy," RSC Advances, Vol. 9, No. 71, 41447-41452, 2019.

36. Pei, Xilong, Haifan Yin, Li Tan, Lin Cao, Zhanpeng Li, Kai Wang, Kun Zhang, and Emil Björnson, "RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials," IEEE Transactions on Communications, Vol. 69, No. 12, 8627-8640, 2021.

37. Xi, Bin, Yu Xiao, Kaiqiang Zhu, Youwei Liu, Houjun Sun, and Zengping Chen, "1-bit wideband reconfigurable reflectarray design in Ku-band," IEEE Access, Vol. 10, 4340-4348, 2021.

38. Chang, Zhuang, Ben You, Lin-Sheng Wu, Min Tang, Yao-Ping Zhang, and Jun-Fa Mao, "A reconfigurable graphene reflectarray for generation of vortex THz waves," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1537-1540, 2016.

39. Huang, J. and J. A. Encinar, "Reflectarray antennas," Encyclopedia of RF and Microwave Engineering, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007.

40. Lee, Sun-Gyu, Yong-Hyun Nam, Yongjune Kim, Jongyeong Kim, and Jeong-Hae Lee, "A wide-angle and high-efficiency reconfigurable reflectarray antenna based on a miniaturized radiating element," IEEE Access, Vol. 10, 103223-103229, Sep. 2022.

41. Zhang, Weiquan, Yue Li, and Zhijun Zhang, "A reconfigurable reflectarray antenna with an 8 μm-thick layer of liquid crystal," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2770-2778, Apr. 2022.

42. Wang, Enhao, Guangyao Peng, Kunjing Zhong, Fan Wu, Zhi Hao Jiang, Ronan Sauleau, and Wei Hong, "A 1296-Cell reconfigurable reflect-array antenna with 2-bit phase resolution for Ka-band applications," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 4, 3425-3437, Apr. 2024.