Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-22
Effect of Electron Beam Irradiation on Differently Treated Carbon Fiber-Filled Acrylonitrile Butadiene Styrene for EMI Shielding
By
Progress In Electromagnetics Research C, Vol. 160, 72-83, 2025
Abstract
The burgeoning reliance on electronic devices in sectors such as aerospace systems and consumer electronics necessitates robust electromagnetic interference (EMI) shielding. Current challenges often involve balancing material performance with sustainability and cost-effectiveness. This study addresses these needs by exploring the use of recycled carbon fiber (rCF) in acrylonitrile butadiene styrene (ABS) composites for enhanced EMI shielding, contributing to more sustainable material development. We investigated the impact of different rCF treatments (untreated, chemically treated, and chemically-mechanically treated) on the mechanical properties (tensile strength, stiffness, flexibility) and EMI shielding effectiveness of these composites. Furthermore, the role of electron beam (EB) irradiation at 200 kGy in creating cross-linked structures to boost conductivity and shielding performance was thoroughly examined. Fabricated via melt compounding, the composites' electrical conductivity and EMI shielding capabilities were the main focus. Results show that the EB-irradiated composite with 30 wt.% chemically treated rCF achieved a peak electrical conductivity of 1.34 × 10-8 S/m and an impressive shielding effectiveness of 46.13 dB. These findings offer crucial insights for developing high-performance, cost-efficient, and potentially sustainable rCF-filled ABS composites for advanced EMI shielding applications.
Citation
Adel M. Alkaseh, Mohd Edeerozey Abd Manaf, Zurina Shamsudin, Mohammed Iqbal Shueb, Mohammed Yousif Zeain, Bilal Salman Taha, Muhammad Inam Abbasi, and Adam Wong Yoon Khang, "Effect of Electron Beam Irradiation on Differently Treated Carbon Fiber-Filled Acrylonitrile Butadiene Styrene for EMI Shielding," Progress In Electromagnetics Research C, Vol. 160, 72-83, 2025.
doi:10.2528/PIERC25022302
References

1. Chung, D. D. L., "Electromagnetic interference shielding effectiveness of carbon materials," Carbon, Vol. 39, No. 2, 279-285, 2001.
doi:10.1016/s0008-6223(00)00184-6

2. Tong, Xingcun Colin, Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press, 2016.
doi:10.1201/9781420073591

3. Kashi, Sima, Rahul K. Gupta, Thomas Baum, Nhol Kao, and Sati N. Bhattacharya, "Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites," Materials & Design, Vol. 109, 68-78, 2016.
doi:10.1016/j.matdes.2016.07.062

4. Shahzad, Faisal, Mohamed Alhabeb, Christine B. Hatter, Babak Anasori, Soon Man Hong, Chong Min Koo, and Yury Gogotsi, "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)," Science, Vol. 353, No. 6304, 1137-1140, 2016.
doi:10.1126/science.aag2421

5. Chen, Zongping, Chuan Xu, Chaoqun Ma, Wencai Ren, and Hui-Ming Cheng, "Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding," Advanced Materials, Vol. 25, No. 9, 1296-1300, 2013.
doi:10.1002/adma.201204196

6. Zhang, Hongming, Guangcheng Zhang, Qiang Gao, Meng Zong, Mingyue Wang, and Jianbin Qin, "Electrically electromagnetic interference shielding microcellular composite foams with 3D hierarchical graphene-carbon nanotube hybrids," Composites Part A: Applied Science and Manufacturing, Vol. 130, 105773, 2020.
doi:10.1016/j.compositesa.2020.105773

7. Lei, Xing, Xinrui Zhang, Anran Song, Shen Gong, Yang Wang, Liuxiong Luo, Teng Li, Zhenghong Zhu, and Zhou Li, "Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@ CNT/sodium alginate/polydimethylsiloxane flexible composite," Composites Part A: Applied Science and Manufacturing, Vol. 130, 105762, 2020.
doi:10.1016/j.compositesa.2019.105762

8. Geetha, S., K. K. Satheesh Kumar, Chepuri R. K. Rao, M. Vijayan, and D. C. Trivedi, "EMI shielding: Methods and materials --- A review," Journal of Applied Polymer Science, Vol. 112, No. 4, 2073-2086, 2009.
doi:10.1002/app.29812

9. Jou, W. S., T. L. Wu, S. K. Chiu, and W. H. Cheng, "Electromagnetic shielding of nylon-66 composites applied to laser modules," Journal of Electronic Materials, Vol. 30, No. 10, 1287-1293, 2001.
doi:10.1007/s11664-001-0113-0

10. Al-Saleh, Mohammed H. and Uttandaraman Sundararaj, "Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile-butadiene-styrene nanocomposites," Journal of Polymer Science Part B: Polymer Physics, Vol. 50, No. 19, 1356-1362, 2012.
doi:10.1002/polb.23129

11. Li, Ning, Yi Huang, Feng Du, Xiaobo He, Xiao Lin, Hongjun Gao, Yanfeng Ma, Feifei Li, Yongsheng Chen, and Peter C. Eklund, "Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites," Nano Letters, Vol. 6, No. 6, 1141-1145, 2006.
doi:10.1021/nl0602589

12. Yang, Yonglai, Mool C. Gupta, Kenneth L. Dudley, and Roland W. Lawrence, "Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding," Nano Letters, Vol. 5, No. 11, 2131-2134, 2005.
doi:10.1021/nl051375r

13. Colbert, Daniel T., "Single-wall nanotubes: A new option for conductive plastics and engineering polymers," Plastics, Additives and Compounding, Vol. 5, No. 1, 18-25, 2003.
doi:10.1016/S1464-391X(03)80069-7

14. Eswaraiah, Varrla, Venkataraman Sankaranarayanan, and Sundara Ramaprabhu, "Functionalized graphene-PVDF foam composites for EMI shielding," Macromolecular Materials and Engineering, Vol. 296, No. 10, 894-898, 2011.
doi:10.1002/mame.201100035

15. Kropka, Jamie M., Karl W. Putz, Victor Pryamitsyn, Venkat Ganesan, and Peter F. Green, "Origin of dynamical properties in PMMA-C60 nanocomposites," Macromolecules, Vol. 40, No. 15, 5424-5432, 2007.
doi:10.1021/ma070407p

16. Sichel, Enid Keil, Carbon Black-polymer Composites: The Physics of Electrically Conducting Composites, New York Marcel Dekker, Inc., 1982.

17. Hamed, Gary R., "Reinforcement of rubber," Rubber Chemistry and Technology, Vol. 73, No. 3, 524-533, 2000.
doi:10.5254/1.3547603

18. Adhikari, Basudam, Arup Kumar Ghosh, and Sukumar Maiti, "Developments in carbon black for rubber reinforcement," Journal of Polymer Materials, Vol. 17, No. 2, 101-125, 2000.

19. Hamed, G. R., "Rubber reinforcement and its classification," Rubber Chemistry and Technology, Vol. 80, No. 3, 533-544, 2007.
doi:10.5254/1.3548178

20. Rahmat, Meysam and Pascal Hubert, "Carbon nanotube-polymer interactions in nanocomposites: A review," Composites Science and Technology, Vol. 72, No. 1, 72-84, 2011.
doi:10.1016/j.compscitech.2011.10.002

21. Tang, Long-Gui and John L. Kardos, "A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix," Polymer Composites, Vol. 18, No. 1, 100-113, 1997.
doi:10.1002/pc.10265

22. Chen, Lin, Kang Zheng, Xingyou Tian, Kun Hu, Ruoxi Wang, Chen Liu, Yong Li, and Ping Cui, "Double glass transitions and interfacial immobilized layer in in-situ-synthesized poly (vinyl alcohol)/silica nanocomposites," Macromolecules, Vol. 43, No. 2, 1076-1082, 2010.
doi:10.1021/ma901267s

23. Chen, Minjiao, Honglin Qu, Jiahua Zhu, Zhiping Luo, Airat Khasanov, Ashwini S. Kucknoor, Neel Haldolaarachchige, David P. Young, Suying Wei, and Zhanhu Guo, "Magnetic electrospun fluorescent polyvinylpyrrolidone nanocomposite fibers," Polymer, Vol. 53, No. 20, 4501-4511, 2012.
doi:10.1016/j.polymer.2012.07.046

24. Robertson, C. G. and C. M. Roland, "Glass transition and interfacial segmental dynamics in polymer-particle composites," Rubber Chemistry and Technology, Vol. 81, No. 3, 506-522, 2008.
doi:10.5254/1.3548217

25. Jouault, Nicolas, Perrine Vallat, Florent Dalmas, Sylvère Said, Jacques Jestin, and François Boué, "Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology," Macromolecules, Vol. 42, No. 6, 2031-2040, 2009.
doi:10.1021/ma801908u

26. Rittigstein, Perla, Rodney D. Priestley, Linda J. Broadbelt, and John M. Torkelson, "Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites," Nature Materials, Vol. 6, No. 4, 278-282, 2007.
doi:10.1038/nmat1870

27. Qian, Dong, Wing Kam Liu, and Rodney S. Ruoff, "Load transfer mechanism in carbon nanotube ropes," Composites Science and Technology, Vol. 63, No. 11, 1561-1569, 2003.
doi:10.1016/s0266-3538(03)00064-2

28. Yu, Min-Feng, Boris I. Yakobson, and Rodney S. Ruoff, "Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes," The Journal of Physical Chemistry B, Vol. 104, No. 37, 8764-8767, 2000.
doi:10.1021/jp002828d

29. Qian, D., E. C. Dickey, R. Andrews, and T. Rantell, "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites," Applied Physics Letters, Vol. 76, No. 20, 2868-2870, 2000.
doi:10.1063/1.126500

30. Li, J. and C. L. Cai, "The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites," Current Applied Physics, Vol. 11, No. 1, 50-54, 2011.
doi:10.1016/j.cap.2010.06.017

31. Shin, Boo Young and Do Hung Han, "Morphological and mechanical properties of polyamide 6/linear low density polyethylene blend compatibilized by electron-beam initiated mediation process," Radiation Physics and Chemistry, Vol. 97, 198-207, 2014.
doi:10.1016/j.radphyschem.2013.11.030

32. McNally, Tony, Peter Boyd, Caroline McClory, Daniel Bien, Ian Moore, Bronagh Millar, John Davidson, and Tony Carroll, "Recycled carbon fiber filled polyethylene composites," Journal of Applied Polymer Science, Vol. 107, No. 3, 2015-2021, 2008.
doi:10.1002/app.27253

33. Chen, I., Jane K. Hill, Ralf Ohlemüller, David B. Roy, and Chris D. Thomas, "Rapid range shifts of species associated with high levels of climate warming," Science, Vol. 333, No. 6045, 1024-1026, 2011.
doi:10.1126/science.1206432

34. Karacan, Ismail and Levent Erzurumluoğlu, "The effect of carbonization temperature on the structure and properties of carbon fibers prepared from poly (m-phenylene isophthalamide) precursor," Fibers and Polymers, Vol. 16, No. 8, 1629-1645, 2015.
doi:10.1007/s12221-015-5030-6

35. Bee, Soo-Tueen, C. T. Ratnam, Lee Tin Sin, Tiam-Ting Tee, Wai-Kien Wong, Jiuun-Xiang Lee, and A. R. Rahmat, "Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 334, 18-27, 2014.
doi:10.1016/j.nimb.2014.04.024

36. Hassan, Medhat M., "Mechanical, thermal, and morphological behavior of the polyamide 6/acrylonitrile-butadiene-styrene blends irradiated with gamma rays," Polymer Engineering & Science, Vol. 48, No. 2, 373-380, 2008.
doi:10.1002/pen.20959

37. Bhadra, Sambhu and Dipak Khastgir, "Degradation and stability of polyaniline on exposure to electron beam irradiation (structure-property relationship)," Polymer Degradation and Stability, Vol. 92, No. 10, 1824-1832, 2007.
doi:10.1016/j.polymdegradstab.2007.07.004

38. Shah, Sejal, N. L. Singh, Anjum Qureshi, Dolly Singh, K. P. Singh, V. Shrinet, and A. Tripathi, "Dielectric and structural modification of proton beam irradiated polymer composite," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 266, No. 8, 1768-1774, 2008.
doi:10.1016/j.nimb.2007.11.061

39. Bhadra, Sambhu, Nikhil K. Singha, and Dipak Khastgir, "Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites," Current Applied Physics, Vol. 9, No. 2, 396-403, 2009.
doi:10.1016/j.cap.2008.03.009

40. Jia, Li-Chuan, Ling Xu, Fang Ren, Peng-Gang Ren, Ding-Xiang Yan, and Zhong-Ming Li, "Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding," Carbon, Vol. 144, 101-108, 2019.
doi:10.1016/j.carbon.2018.12.034

41. Lee, Ju Hyuk, Heon Yong Jeong, Sang Yoon Lee, and Sung Oh Cho, "Effects of electron beam irradiation on mechanical and thermal shrinkage properties of boehmite/HDPE nanocomposite film," Nanomaterials, Vol. 11, No. 3, 777, 2021.
doi:10.3390/nano11030777

42. Zeain, M. Y., Z. Zakaria, M. Abu, Ahmed Jamal Abdullah Al-Gburi, Hussein Alsariera, A. Toding, Sameer Alani, Monjed A. Al-Tarifi, Othman S. Al-Heety, H. Lago, and Tale Saeidi, "Design of helical antenna for next generation wireless communication," Przegląd Elektrotechniczny, Vol. 11, 96-99, 2020.
doi:10.15199/48.2020.11.19

43. Zeain, Mohammed Yousif, M. Abu, Z. Zakaria, Ahmed Jamal Abdullah Al-Gburi, R. Syahputri, A. Toding, and Sriyanto Sriyanto, "Design of a wideband strip helical antenna for 5G applications," Bulletin of Electrical Engineering and Informatics, Vol. 9, No. 5, 1958-1963, Oct. 2020.
doi:10.11591/eei.v9i5.2055

44. Cong, Lingzhi, Zhibin Guo, Xin Zhang, Huyang Li, Hao Jiang, Yuhang Jing, Jihong Yan, Weiqi Li, Jianqun Yang, and Xingji Li, "Effect of electron beam irradiation on the percentage loss of tensile modulus of epoxy polymer," Polymers, Vol. 17, No. 4, 447, 2025.
doi:10.3390/polym17040447

45. Alsariera, Hussein, Z. Zakaria, A. A. M. Isa, Sameer Alani, M. Y. Zeain, Othman S. Al-Heety, S. Ahmed, Mussa Mabrok, and R. Alahnomi, "Simple broadband circularly polarized monopole antenna with two asymmetrically connected U-shaped parasitic strips and defective ground plane," TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 18, No. 3, 1169-1175, 2020.
doi:10.12928/telkomnika.v18i3.14313

46. Zeain, M. Y., M. Abu, and S. N. Zabri, "Investigation of printed helical antenna using varied materials for ultra-wide band frequency," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), Vol. 10, No. 2-7, 137-142, 2018.

47. Kurbanova, Bayan, Kazybek Aimaganbetov, Kanat Ospanov, Kairat Abdrakhmanov, Nurkhat Zhakiyev, Bauyrzhan Rakhadilov, Zhuldyz Sagdoldina, and Nurlan Almas, "Effects of electron beam irradiation on mechanical and tribological properties of PEEK," Polymers, Vol. 15, No. 6, 1340, 2023.
doi:10.3390/polym15061340

48. Alyones, Sharhabeel and Michael Granado, "Extinction efficiency of copper nano fibers in the infrared," Progress In Electromagnetics Research C, Vol. 152, 259-262, 2025.
doi:10.2528/pierc24122205

49. Zeain, Mohammed Yousif, Maisarah Abu, Apriana Toding, Zahriladha Zakaria, Hussein Alsariera, Ihsan Ullah, Ali Abdulateef Abdulbari, Hamizan Yon, Bilal Salman Taha, and Muhammad Inam Abbasi, "Advanced helical antenna design for X-band applications using AI," Progress In Electromagnetics Research C, Vol. 153, 201-211, 2025.
doi:10.2528/pierc25011305

50. Yuan, Yueyi, Kuang Zhang, Qun Wu, Shah Nawaz Burokur, and Patrice Genevet, "Reaching the efficiency limit of arbitrary polarization transformation with non-orthogonal metasurfaces," Nature Communications, Vol. 15, No. 1, 6682, 2024.
doi:10.1038/s41467-024-50560-1

51. Zeain, M. Y., Maisarah Abu, Ayman A. Althuwayb, Hussein Alsariera, Ahmed Jamal Abdullah Al-Gburi, Ali Abdulateef Abdulbari, and Zahriladha Zakaria, "A new technique of FSS-based novel chair-shaped compact MIMO antenna to enhance the gain for sub-6GHz 5G applications," IEEE Access, Vol. 12, 49489-49507, 2024.
doi:10.1109/access.2024.3380013

52. Yuan, Yueyi, Wenjie Zhou, He Zhang, Yuxiang Wang, Hua Zong, Yue Wang, Yongkang Dong, Shah Nawaz Burokur, and Kuang Zhang, "Full-polarimetric synthesized holographic displaying empowered by chirality-assisted metasurface," Small Science, Vol. 4, No. 8, 2400138, 2024.
doi:10.1002/smsc.202400138

53. Manaf, Abd, Mohd Edeerozey, Mohamed Iqbal Shueb, Noraiham Mohamad, Nurhernida Abdullah Sani, and Adel Ali Alkaseh, "Modification of Nylon 66/graphene nanoplatelet composites via electron beam irradiation," Malaysian Journal of Microscopy, Vol. 18, No. 2, 132-141, 2022.