Vol. 155
Latest Volume
All Volumes
PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-05-18
Design and Optimization of Fault Tolerant Dual-Permanent Magnet Excited Vernier Rim Driven Machine
By
Progress In Electromagnetics Research C, Vol. 155, 225-234, 2025
Abstract
In order to improve the power density and torque density of the fault tolerant permanent magnet vernier rim driven machine, a new type of fault tolerant dual-permanent magnet excited vernier rim driven machine is proposed. Permanent magnets are placed on the stator and rotor of the machine, and more working harmonics are modulated by the dual-modulation effect of the air gap permeability by the teeth of the stator and rotor, thus improving the output performance of the machine. Aiming at the problem of more optimization parameters, a new optimization design method combining multi-objective genetic algorithm with single parameter scanning algorithm is proposed to optimize the design of machine. Compared with the traditional fault tolerant permanent magnet vernier rim driven machine, it shows that the machine has better output performance.
Citation
Haibo Liao, Jingwei Zhu, Yaqian Cai, Shukuan Zhang, and Kun Zang, "Design and Optimization of Fault Tolerant Dual-Permanent Magnet Excited Vernier Rim Driven Machine," Progress In Electromagnetics Research C, Vol. 155, 225-234, 2025.
doi:10.2528/PIERC25030301
References

1. Lin, Heyun, Yang Zhang, Hui Yang, et al., "Research status and latest progress of permanent magnet vernier motors," Proceedings of the Chinese Society of Electrical Engineering, Vol. 36, No. 18, 5021-5034, 2016.

2. Du, Zhentao S. and Thomas A. Lipo, "Design of an improved dual-stator ferrite magnet vernier machine to replace an industrial rare-earth IPM machine," IEEE Transactions on Energy Conversion, Vol. 34, No. 4, 2062-2069, Dec. 2019.

3. Wu, Dingying, Zixuan Xiang, Xiaoyong Zhu, Li Quan, Min Jiang, and Yongfeng Liu, "Optimization design of power factor for an in-wheel vernier PM machine from the perspective of air-gap harmonic modulation," IEEE Transactions on Industrial Electronics, Vol. 68, No. 10, 9265-9276, Oct. 2021.

4. Qiao, Tianhuai, Jingwei Zhu, and Xiaoyi Wang, "Performance comparison of spoke array fault tolerant PM vernier rim driven machine with different numbers of flux modulation poles," Progress In Electromagnetics Research M, Vol. 105, 55-65, 2021.
doi:10.2528/PIERM21082606

5. Ling, Zhijian, Qi Zhang, and Meimei Xu, "Design and analysis of linear primary permanent magnet vernier machines with different winding configurations," Progress In Electromagnetics Research C, Vol. 151, 33-43, 2024.

6. Zhao, Yu, Dawei Li, Xiang Ren, Ziyi Liang, and Ronghai Qu, "Low pole-pair ratio integration design of permanent magnet vernier machine with improved power factor," IEEE Transactions on Industrial Electronics, Vol. 71, No. 3, 2820-2830, Mar. 2024.

7. Wang, Rongxin, Bo Wang, Dewen Tian, Haiwei Cai, Ming Cheng, and Wei Hua, "Slot pole combination analysis of FSCW-PMVM on magnetic field modulation performance," IEEE Transactions on Transportation Electrification, Vol. 11, No. 2, 5665-5675, Oct. 2024.

8. Khan, Shahzad, Faisal Khan, Wasiq Ullah, Zahoor Ahmad, and Basharat Ullah, "Split pole permanent magnet vernier machine with Halbach array magnets in stator slot opening and consequent pole rotor," IEEE Access, Vol. 10, 75672-75679, 2022.

9. Kui, Zhangtao, Libing Jing, Zeyu Min, and Kun Yang, "Design and analysis of a novel U-PM vernier machine with HTS bulks," Progress In Electromagnetics Research C, Vol. 128, 97-111, 2022.

10. Zhang, Yang, Jiming Luo, Mingming Huang, Quanzhen Huang, and Duane Decker, "Design and experimental verification of variable flux permanent magnet vernier machine using time-stepping finite element method," Progress In Electromagnetics Research C, Vol. 129, 115-126, 2023.
doi:10.2528/PIERC22112102

11. Li, Qiao, Shahrir Abdullah, and Mohammad Rasidi Mohammad Rasani, "A review of progress and hydrodynamic design of integrated motor pump-jet propulsion," Applied Sciences, Vol. 12, No. 8, 3824, Apr. 2022.

12. Cai, Boao, Qing Xu, Binbin Tian, Liaoyuan Qiu, Wei Chai, Jianzhang Qi, and Lin He, "Improvement of the efficiency for rim-driven thrusters through acceleration of gap flow," Ocean Engineering, Vol. 291, 116480, 2024.

13. Ouyang, Wu, Zhuo Zhang, Bao Liu, et al., "Research status and development trend of ship flange thruster key technology," Ship Engineering, Vol. 46, No. 9, 14-32, 2024.

14. Qiao, Tianhuai, Jingwei Zhu, and Xiaoyi Wang, "Design and optimization of a flux-modulated fault-tolerant permanent magnet rim-driven machine with combined stator to improve torque density," IEEE Transactions on Energy Conversion, Vol. 38, No. 1, 75-88, 2023.

15. Gao, Yuting, Takashi Kosaka, Yang Liu, Martin Doppelbauer, and Ronghai Qu, "Comparative analysis of double flux modulation permanent magnet machines with different stator PM arrangements," IEEE Transactions on Industry Applications, Vol. 58, No. 2, 1941-1951, Mar.-Apr. 2022.

16. He, Wangsong, Jingwei Zhu, Zhe Wang, Jiubo Yue, and Tianrui Zhao, "Optimization of flux-concentrating consequent-pole permanent magnet fault tolerant vernier rim-driven motor," Progress In Electromagnetics Research C, Vol. 135, 241-253, 2023.
doi:10.2528/PIERC23052801

17. Du, Kangkang, Liang Xu, Wenxiang Zhao, and Guohai Liu, "Analysis and design of a fault-tolerant permanent magnet vernier machine with improved power factor," IEEE Transactions on Industrial Electronics, Vol. 69, No. 5, 4353-4363, May 2022.

18. Bai, Jingang, Jiaqi Liu, Guopeng Liu, Yong Liu, and Ping Zheng, "Investigation of the power factor of magnetic-field modulated brushless double-rotor machine," IEEE Transactions on Power Electronics, Vol. 36, No. 1, 423-432, Jan. 2021.

19. Zhao, Yu, Xiang Ren, Xinggang Fan, Dawei Li, and Ronghai Qu, "A high power factor permanent magnet vernier machine with modular stator and yokeless rotor," IEEE Transactions on Industrial Electronics, Vol. 70, No. 7, 7141-7152, Jul. 2023.

20. Yu, Yanlei, Yulong Pei, and Feng Chai, "Power factor analysis in spoke-type permanent magnet vernier motors with different slot-pole combinations for in-wheel direct drive," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 642-655, Mar. 2023.

21. Zang, Kun, Yaqian Cai, Jingwei Zhu, Haibo Liao, Mingxuan Li, and Qing Liu, "Optimized design of high power factor fault-tolerant permanent magnet vernier rim-driven machine," Progress In Electromagnetics Research C, Vol. 144, 75-83, 2024.
doi:10.2528/PIERC24051002