1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.
2. Song, J., Cai-Cheng Lu, and Weng Cho Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855 Google Scholar
3. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical legendre basis functions for electromagnetic modeling," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279 Google Scholar
4. Prakash, V. V. S. and Raj Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave and Optical Technology Letters, Vol. 36, No. 2, 95-100, Jan. 2003.
doi:10.1002/mop.10685 Google Scholar
5. Lucente, Eugenio, Agostino Monorchio, and Raj Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166 Google Scholar
6. Wang, Pan, Zhong-Gen Wang, Yu-Fa Sun, and Wen-Yan Nie, "Novel compressive sensing computing model used for analyzing electromagnetic scattering characteristics of three-dimensional electrically large objects," Acta Physica Sinica, Vol. 72, No. 3, 54-61, Feb. 2023.
doi:10.7498/aps.72.20221574 Google Scholar
7. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
8. Chen, Ming Sheng, Fa Lin Liu, Hong Mei Du, and Xian Liang Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1243-1246, Oct. 2011.
doi:10.1109/LAWP.2011.2174190 Google Scholar
9. Chai, Shui-Rong and Li-Xin Guo, "A new method based on compressive sensing for monostatic scattering analysis," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2457-2461, Oct. 2015.
doi:10.1002/mop.29355 Google Scholar
10. Chai, Shui-Rong and Li-Xin Guo, "Compressive sensing for monostatic scattering from 3-D NURBS geometries," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3545-3553, 2016.
doi:10.1109/TAP.2016.2580166 Google Scholar
11. Kong, Meng, Mingsheng Chen, Xinyuan Cao, Liang Zhang, Qi Qi, and Xianliang Wu, "Fast analysis of local current distribution for electromagnetic scattering problems of electrically large objects," IEEE Access, Vol. 8, 127640-127647, Jul. 2020.
doi:10.1109/ACCESS.2020.3007958 Google Scholar
12. Kong, Meng, Ming Sheng Chen, Xin Yuan Cao, Jia Bing Zhu, Xiao Jing Kuang, Qi Qi, and Xian Liang Wu, "Fast electromagnetic scattering analysis of inhomogeneous dielectric objects over a wide incident angle," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1527-1531, Aug. 2021.
doi:10.1109/LAWP.2021.3089629 Google Scholar
13. Chai, Shui-Rong and Li-Xin Guo, "Fast analysis of bistatic scattering problems with compressive sensing technique," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 13, 1755-1762, 2016.
doi:10.1080/09205071.2016.1213665 Google Scholar
14. Kong, Meng, Ming Sheng Chen, Bo Wu, and Xian Liang Wu, "Fast and stabilized algorithm for analyzing electromagnetic scattering problems of bodies of revolution by compressive sensing," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 198-201, May 2016. Google Scholar
15. Wang, Zhonggen, Haoran Yuan, Yufa Sun, Wenyan Nie, and Pan Wang, "Block-based Krylov subspace basis functions for solving bistatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 10, 2561-2565, Oct. 2023.
doi:10.1109/LAWP.2023.3296720 Google Scholar
16. Gao, Yalan, Muhammad Firdaus Akbar, and Ghassan Nihad Jawad, "Stabilized and fast method for compressive-sensing-based method of moments," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 2915-2919, Dec. 2023.
doi:10.1109/LAWP.2023.3304306 Google Scholar
17. Cao, Xinyuan, Mingsheng Chen, Qi Qi, Meng Kong, Jinhua Hu, Liang Zhang, and Xianliang Wu, "Solving electromagnetic scattering problems by underdetermined equations and Krylov subspace," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 6, 541-544, Jun. 2020.
doi:10.1109/LMWC.2020.2988166 Google Scholar
18. Wang, Zhong-Gen, Wen-Yan Nie, and Han Lin, "Characteristic basis functions enhanced compressive sensing for solving the bistatic scattering problems of three-dimensional targets," Microwave and Optical Technology Letters, Vol. 62, No. 10, 3132-3138, May 2020.
doi:10.1002/mop.32432 Google Scholar
19. Wang, Zhonggen, Pan Wang, Yufa Sun, and Wenyan Nie, "Fast analysis of bistatic scattering problems for three-dimensional objects using compressive sensing and characteristic modes," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1817-1821, Sep. 2022.
doi:10.1109/LAWP.2022.3181602 Google Scholar
20. Wang, Jian, Seokbeop Kwon, and Byonghyo Shim, "Generalized orthogonal matching pursuit," IEEE Transactions on Signal Processing, Vol. 60, No. 12, 6202-6216, Sep. 2012.
doi:10.1109/TSP.2012.2218810 Google Scholar
21. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
22. Candès, Emmanuel J., "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathématique, Vol. 346, No. 9-10, 589-592, 2008.
doi:10.1016/j.crma.2008.03.014 Google Scholar
23. Tropp, Joel A. and Anna C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108 Google Scholar
24. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, 1971.
doi:10.1109/TAP.1971.1139999 Google Scholar