Vol. 154
Latest Volume
All Volumes
PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-04-22
Measurement Matrix Optimization for Compressive Sensing-Based Method of Moments Based on Dynamic Extraction
By
Progress In Electromagnetics Research C, Vol. 154, 249-255, 2025
Abstract
To address the challenges in constructing the measurement matrix within the compressive sensing-based method of moments (CS-MoM) framework, this paper presents a novel dynamic extraction method based on row norm significance for impedance matrix compression. The proposed method first sorts the impedance matrix rows in descending order according to their row norm importance, followed by a dynamic extraction process that adapts the extraction density based on row significance. This strategy ensures dense extraction of high-importance rows to maintain matrix representativeness, while sparse extraction of low-importance rows preserves global structural coverage. Finally, through the validation of numerical results from three different computational models, it is demonstrated that the proposed method improves computational accuracy while ensuring computational efficiency compared to the uniform extraction-based novel CS-MoM method.
Citation
Zhonggen Wang, Yang Liu, and Wenyan Nie, "Measurement Matrix Optimization for Compressive Sensing-Based Method of Moments Based on Dynamic Extraction," Progress In Electromagnetics Research C, Vol. 154, 249-255, 2025.
doi:10.2528/PIERC25030304
References

1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

2. Song, J., Cai-Cheng Lu, and Weng Cho Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

3. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical legendre basis functions for electromagnetic modeling," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279

4. Prakash, V. V. S. and Raj Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave and Optical Technology Letters, Vol. 36, No. 2, 95-100, Jan. 2003.
doi:10.1002/mop.10685

5. Lucente, Eugenio, Agostino Monorchio, and Raj Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166

6. Wang, Pan, Zhong-Gen Wang, Yu-Fa Sun, and Wen-Yan Nie, "Novel compressive sensing computing model used for analyzing electromagnetic scattering characteristics of three-dimensional electrically large objects," Acta Physica Sinica, Vol. 72, No. 3, 54-61, Feb. 2023.
doi:10.7498/aps.72.20221574

7. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

8. Chen, Ming Sheng, Fa Lin Liu, Hong Mei Du, and Xian Liang Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1243-1246, Oct. 2011.
doi:10.1109/LAWP.2011.2174190

9. Chai, Shui-Rong and Li-Xin Guo, "A new method based on compressive sensing for monostatic scattering analysis," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2457-2461, Oct. 2015.
doi:10.1002/mop.29355

10. Chai, Shui-Rong and Li-Xin Guo, "Compressive sensing for monostatic scattering from 3-D NURBS geometries," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3545-3553, 2016.
doi:10.1109/TAP.2016.2580166

11. Kong, Meng, Mingsheng Chen, Xinyuan Cao, Liang Zhang, Qi Qi, and Xianliang Wu, "Fast analysis of local current distribution for electromagnetic scattering problems of electrically large objects," IEEE Access, Vol. 8, 127640-127647, Jul. 2020.
doi:10.1109/ACCESS.2020.3007958

12. Kong, Meng, Ming Sheng Chen, Xin Yuan Cao, Jia Bing Zhu, Xiao Jing Kuang, Qi Qi, and Xian Liang Wu, "Fast electromagnetic scattering analysis of inhomogeneous dielectric objects over a wide incident angle," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1527-1531, Aug. 2021.
doi:10.1109/LAWP.2021.3089629

13. Chai, Shui-Rong and Li-Xin Guo, "Fast analysis of bistatic scattering problems with compressive sensing technique," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 13, 1755-1762, 2016.
doi:10.1080/09205071.2016.1213665

14. Kong, Meng, Ming Sheng Chen, Bo Wu, and Xian Liang Wu, "Fast and stabilized algorithm for analyzing electromagnetic scattering problems of bodies of revolution by compressive sensing," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 198-201, May 2016.

15. Wang, Zhonggen, Haoran Yuan, Yufa Sun, Wenyan Nie, and Pan Wang, "Block-based Krylov subspace basis functions for solving bistatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 10, 2561-2565, Oct. 2023.
doi:10.1109/LAWP.2023.3296720

16. Gao, Yalan, Muhammad Firdaus Akbar, and Ghassan Nihad Jawad, "Stabilized and fast method for compressive-sensing-based method of moments," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 2915-2919, Dec. 2023.
doi:10.1109/LAWP.2023.3304306

17. Cao, Xinyuan, Mingsheng Chen, Qi Qi, Meng Kong, Jinhua Hu, Liang Zhang, and Xianliang Wu, "Solving electromagnetic scattering problems by underdetermined equations and Krylov subspace," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 6, 541-544, Jun. 2020.
doi:10.1109/LMWC.2020.2988166

18. Wang, Zhong-Gen, Wen-Yan Nie, and Han Lin, "Characteristic basis functions enhanced compressive sensing for solving the bistatic scattering problems of three-dimensional targets," Microwave and Optical Technology Letters, Vol. 62, No. 10, 3132-3138, May 2020.
doi:10.1002/mop.32432

19. Wang, Zhonggen, Pan Wang, Yufa Sun, and Wenyan Nie, "Fast analysis of bistatic scattering problems for three-dimensional objects using compressive sensing and characteristic modes," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1817-1821, Sep. 2022.
doi:10.1109/LAWP.2022.3181602

20. Wang, Jian, Seokbeop Kwon, and Byonghyo Shim, "Generalized orthogonal matching pursuit," IEEE Transactions on Signal Processing, Vol. 60, No. 12, 6202-6216, Sep. 2012.
doi:10.1109/TSP.2012.2218810

21. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

22. Candès, Emmanuel J., "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathématique, Vol. 346, No. 9-10, 589-592, 2008.
doi:10.1016/j.crma.2008.03.014

23. Tropp, Joel A. and Anna C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

24. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, 1971.
doi:10.1109/TAP.1971.1139999