Vol. 156
Latest Volume
All Volumes
PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-05-25
Numerical Analysis of Electric Field Distribution in Segmented Lightning Diverter Strip
By
Progress In Electromagnetics Research C, Vol. 156, 49-57, 2025
Abstract
This paper investigates the distribution of the electric field around a circular segmented diverter strip designed for lightning protection. This is accomplished by performing parametric analysis on various geometry parameters of the circular-shaped segmented lightning diverter strip and numerically calculating the electric field and crossover voltage using full-wave simulation. The results demonstrate that as the spacing between the segments decreases, there is a significant increase in electric field strength, reaching a maximum value of 438.22 MV m-1, while the crossover voltage decreases from 2990.59 V to 744.35 V. An increase in the diameter of the segments is associated with a stronger electric field, with the maximum field strength reaching 300.36 MV m-1, while in this case, the crossover voltage decreases from 1493.36 V to 1462.36 V. In contrast, the electric field increases as the segment height decreases, with no significant change in the crossover voltage. The study also analyzes the impact of curvature and different substrate materials on the electric field distribution and crossover voltage. Additionally, simulation results on the electric field distribution and capacitance calculations for various segments of the diverter are utilized to predict the probable location of the lightning attachment.
Citation
Rudra Narayan Barik, and Hrishikesh Sonalikar, "Numerical Analysis of Electric Field Distribution in Segmented Lightning Diverter Strip," Progress In Electromagnetics Research C, Vol. 156, 49-57, 2025.
doi:10.2528/PIERC25030802
References

1. Plumer, J. Anderson and John D. Robb, "The direct effects of lightning on aircraft," IEEE Transactions on Electromagnetic Compatibility, No. 2, 158-172, 1982.

2. Yasuda, Yoh, Shigeru Yokoyama, Masayuki Minowa, and Tomoyuki Satoh, "Classification of lightning damage to wind turbine blades," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 7, No. 6, 559-566, 2012.

3. Ikhazuangbe, Godson I., Chandima Gomes, Shahram Mohanna, Bob Dagogo, Osawaru N. Osarimwian, Edward Jaja, and Promise T. Alole, "A review of lightning protection methods for wind turbine blades," IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), Vol. 18, No. 1, 01-13, 2023.

4. Fisher, Franklin A. and J. Anderson Plumer, ``Lightning protection of aircraft'', Tech. Rep., NASA, 1977.

5. Karch, Christian, Fridolin Heidler, and Christian Paul, "Protection of aircraft radomes against direct lightning strikes --- An overview," Atmosphere, Vol. 12, No. 9, 1141, 2021.

6. Gagné, Martin and Daniel Therriault, "Lightning strike protection of composites," Progress in Aerospace Sciences, Vol. 64, 1-16, 2014.

7. Evans, Simon, Ivan Revel, Matthew Cole, and Richard Mills, "Lightning strike protection of aircraft structural joints," 2014 International Conference on Lightning Protection (ICLP), 1952-1959, Shanghai, China, Oct. 2014.

8. Lalande, P. and A. Delannoy, "Numerical methods for zoning computation," Aerospace Lab, No. 5, p-1, 2012.

9. Madsen, S. F., K. Bertelsen, T. H. Krogh, H. V. Erichsen, A. N. Hansen, and K. B. Lønbæk, "Proposal of new zoning concept considering lightning protection of wind turbine blades," 2010 30th International Conference on Lightning Protection (ICLP), 1-7, Cagliari, Italy, Sep. 2010.

10. Amason, M. P. and G. J. Cassell, "Radome lightning protection techniques and their electromagnetic compatibility," 1970 IEEE Electromagnetic Compatibility Symposium Record, 1-19, Anaheim, CA, USA, Jul. 1970.

11. Piche, Alexandre, Gerard-Pascal Piau, Christophe Bernus, Franck Campagna, and Dominique Balitrand, "Prediction by simulation of electromagnetic impact of radome on typical aircraft antenna," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 3205-3208, The Hague, Netherlands, Apr. 2014.

12. Elkalsh, Ahmed, Phillip Sewell, Trevor M. Benson, and Ana Vukovic, "Coupled electrothermal two-dimensional model for lightning strike prediction and thermal modeling using the TLM method," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 2, 38-48, 2017.

13. Hansen, Lars Bo, John Korsgaard, and Ivan Mortensen, "Improved lightning protection system enhances the reliability of multi-MW blades," LM Glasfiber A/S, Lunderskov, DK, www. Imglasfiber. com, 1-11, 2005.

14. Ayub, A. S., W. H. Siew, and S. J. MacGregor, "Lightning protection of wind turbine blades --- An alternative approach," 2011 7th Asia-Pacific International Conference on Lightning, 941-946, Chengdu, China, Nov. 2011.

15. Petrov, N. I., A. Haddad, G. N. Petrova, H. Griffiths, and R. T. Waters, "Study of effects of lightning strikes to an aircraft," Recent Advances in Aircraft Technology, Intechopen, 2012.

16. Yanchao, Duan, Xiong Xiu, and H. U. Pingdao, "Research on aircraft radome lightning protection based on segmented diverter strips," 2017 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-6, Angers, France, Sep. 2017.

17. Vukovic, Ana, Phillip Sewell, and Trevor M. Benson, "Impact of in situ radome lightning diverter strips on antenna performance," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7287-7296, 2020.

18. Vukovic, Ana, Phillip Sewell, Trevor M. Benson, Chris C. R. Jones, and Simeon Earl, "Impact of lightning diverter strips on antenna radiation patterns," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, Denmark, Mar. 2020.

19. Zheng, Yijie, Ana Vukovic, Phillip Sewell, and Allen Hall, "EM performance of segmented diverter strips used in lightning protection of wind turbine blades," 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 1-4, IEEE, 2021.

20. Chen, Han, Fusheng Wang, Zheng He, Zhufeng Yue, et al. "Plasma discharge characteristics of segmented diverter strips subject to lightning strike," Plasma Science and Technology, Vol. 21, No. 2, 025301, 2018.

21. Ulmann, A., P. Brechet, Anne Bondiou-Clergerie, A. Delannoy, P. Lalande, P. Blanchet, P. Laroche, E. Bocherens, G. L. Bacchiega, and I. Gallimberti, "New investigations of the mechanisms of lightning strike to radomes Part I: Experimental study in high voltage laboratory," SAE transactions, 325-331, 2001.

22. Karch, Christian, Christian Paul, and Fridolin Heidler, "Lightning strike protection of radomes," 2019 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 650-655, Barcelona, Spain, Sep. 2019.

23. Karch, C., W. Wulbrand, H. W. Zaglauer, and C. J. Hardwick, "An approach to determining radome diverter strip geometry," Proceedings of the ICOLSE, 16-19, 2003.

24. Chen, Chen, Wei Yan, Yang Zhao, Enrong Wang, Chunxiao Fu, Runqing Ma, and Jiaming Zhu, "Simulation and analysis of EMP transient electromagnetic effect of aircraft," The Journal of Engineering, Vol. 2019, No. 16, 2464-2467, 2019.

25. Vukovic, Ana, Phillip Sewell, and Trevor M. Benson, "Generating radome geometries for full lightning protection studies," 2019 ESA Workshop on Aerospace EMC (Aerospace EMC), 1-5, IEEE, 2019.

26. Fisher, Franklin A. and J. Anderson Plumer, ``Lightning protection of aircraft handbook,” Tech. Rep., Repository & Open Science Acess Portal (ROSA P), 2022.

27. Goodloe, C., “Lightning protection guidelines for aerospace vehicles,” Tech. Rep., Marshall Space Flight Center, NASA, 1999.

28. Karch, Christian, Werner Lick, and Stephan Pack, "Full-scale high voltage radome initial leader attachment tests," International Conference on Lightning and Static Electricity: Wichita, KS, USA, 2019.

29. Padoan, F., D. Clark, A. Haddad, C. Karch, and P. Westphal, "Initiation of electrical discharge at the triple junction of the lightning protection of an aircraft radome," IEEE Electrical Insulation Magazine, Vol. 39, No. 1, 6-16, 2022.

30. Systèmes, Dassault, “CST Studio Suite — Electromagnetic Field Simulation Software,” Dassault Systèmes, Germany, [Online]. Available: https://www.3ds.com/products/simulia/cststudio-suite, 2024.

31. Karch, C., M. Calomfirescu, M. Rothenhäusler, C. Brand, and H. Meister, “FFS: Lightning strike protection of radomes — An overview,” Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, 2017.

32. Plumer, J. A. and L. C. Hoots, "Lightning protection with segmented diverters," 1978 IEEE International Symposium on Electromagnetic Compatibility, 1-8, IEEE, 1978.