Vol. 156
Latest Volume
All Volumes
PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-06-09
Innovative Optically Transparent Planar Antenna for WiMAX Communication Systems
By
Progress In Electromagnetics Research C, Vol. 156, 175-182, 2025
Abstract
This paper presents a study of a novel optically transparent planar antenna operating at a resonant frequency of 8.5 GHz, specifically designed for WiMAX wireless communication systems. The antenna is fed by a 50 Ω microstrip line and exhibits a wide operational bandwidth. Measuring 30 × 30 mm2 and achieving an optical transparency exceeding 70% of glass, the proposed antenna delivers outstanding performance while minimizing its visual impact. It is fabricated using an innovative rectangular meshed pure copper grid layer, deposited on a 0.7-mm-thick borosilicate flat glass substrate, optimizing both transparency and conductivity. Experimental evaluations of key performance parameters, including the reflection coefficient, radiation pattern, and gain, were conducted to assess the antenna's effectiveness at the target frequency of 8.5 GHz. The measured results confirm that the antenna exhibits excellent impedance matching at 8.5 GHz, achieving a peak realized gain of 5.2 dBi. These findings demonstrate the feasibility of transparent antennas that offer performance on par with non-transparent alternatives, while providing distinct aesthetic advantages. As a result, the proposed antenna presents a viable solution for applications requiring both functionality and visual integration, such as smart devices and architectural installations.
Citation
Soukaina Sekkal, Moustapha El Bakkali, Jamal Abounasr, Zainab L'Gzouli, Naima Amar Touhami, Bousselham Samoudi, Adel Asselman, and Othmane Bendaou, "Innovative Optically Transparent Planar Antenna for WiMAX Communication Systems," Progress In Electromagnetics Research C, Vol. 156, 175-182, 2025.
doi:10.2528/PIERC25031006
References

1. Balanis, C. A., "Antenna theory: A review," Proceedings of the IEEE, Vol. 80, No. 1, 7-23, 2002.
doi:10.1109/5.119564

2. Lo, Yuen T. and S. W. Lee, Antenna Handbook: Theory, Applications, and Design, Springer Science & Business Media, 2013.

3. Jain, Prince, Prabodh K. Sahoo, Aymen D. Khaleel, and Ahmed Jamal Abdullah Al-Gburi, "Enhanced prediction of metamaterial antenna parameters using advanced machine learning regression models," Progress In Electromagnetics Research C, Vol. 146, 1-12, 2024.
doi:10.2528/PIERC24060901

4. Kirtania, Sharadindu Gopal, Alan Wesley Elger, Md. Rabiul Hasan, Anna Wisniewska, Karthik Sekhar, Tutku Karacolak, and Praveen Kumar Sekhar, "Flexible antennas: A review," Micromachines, Vol. 11, No. 9, 847, 2020.

5. El Misilmani, H. M., M. Al-Husseini, K. Y. Kabalan, and A. El-Hajj, "A simple miniaturized triple-band antenna for WLAN/WiMAX applications," PIERS Proceedings, 608-612, Moscow, Russia, Aug. 19-23 2012.

6. Sayem, Abu Sadat Md., Ali Lalbakhsh, Karu P. Esselle, John L. Buckley, Brendan O’Flynn, and Roy B. V. B. Simorangkir, "Flexible transparent antennas: Advancements, challenges, and prospects," IEEE Open Journal of Antennas and Propagation, Vol. 3, 1109-1133, 2022.

7. Soni, Gaurav Kumar, Dinesh Yadav, Ashok Kumar, Prince Jain, and Amit Rathi, "Design and SAR analysis of DGS based deformed microstrip antenna for ON/OFF body smart wearable IoT applications," Physica Scripta, Vol. 100, No. 1, 015536, 2024.

8. Green, Ryan B., Michelle Guzman, Natalia Izyumskaya, Barkat Ullah, Supapon Hia, Joshua Pitchford, Ranjita Timsina, Vitaliy Avrutin, Umit Ozgur, Hadis Morkoc, Nibir Dhar, and Erdem Topsakal, "Optically transparent antennas and filters: A smart city concept to alleviate infrastructure and network capacity challenges," IEEE Antennas and Propagation Magazine, Vol. 61, No. 3, 37-47, 2019.

9. Soni, Gaurav Kumar, Dinesh Yadav, Ashok Kumar, Prince Jain, and Manish Varun Yadav, "Design and optimization of flexible DGS-based microstrip antenna for wearable devices in the Sub-6 GHz range using the nelder-mead simplex algorithm," Results in Engineering, Vol. 24, 103470, 2024.

10. El Halaoui, Mustapha, Abdelmoumen Kaabal, Hassan Asselman, Saida Ahyoud, and Adel Asselman, "Multiband planar inverted‐F antenna with independent operating bands control for mobile handset applications," International Journal of Antennas and Propagation, Vol. 2017, No. 1, 8794039, 2017.

11. Haraty, Mohammad Reza, Mohammad Naser-Moghadasi, Abbas Ali Lotfi-Neyestanak, and Alireza Nikfarjam, "Improving the efficiency of transparent antenna using gold nanolayer deposition," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 4-7, 2015.

12. Desai, Arpan, Trushit Upadhyaya, and Riki Patel, "Compact wideband transparent antenna for 5G communication systems," Microwave and Optical Technology Letters, Vol. 61, No. 3, 781-786, 2019.

13. Sissoko, Abdoulaye, Cheick Oumar Sanogo, and Badié Diourté, "A review on conductive and transparent materials used in the design of transparent antennas," Open Journal of Antennas and Propagation, Vol. 11, No. 2, 11-25, 2023.

14. Lim, Eng Hock and Kwok Wa Leung, "Transparent dielectric resonator antennas for optical applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1054-1059, 2010.

15. Zhang, Daihua, Koungmin Ryu, Xiaolei Liu, Evgueni Polikarpov, James Ly, Mark E. Tompson, and Chongwu Zhou, "Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes," Nano Letters, Vol. 6, No. 9, 1880-1886, 2006.

16. Ting, Tien-Lun, "Technology of liquid crystal based antenna," Optics Express, Vol. 27, No. 12, 17138-17153, 2019.

17. Varghese, Oomman K., Maggie Paulose, and Craig A. Grimes, "Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells," Nature Nanotechnology, Vol. 4, No. 9, 592-597, 2009.

18. Chishti, Abdul Rehman, Abdul Aziz, Muhammad Ali Qureshi, Muhammad Nawaz Abbasi, Abdullah M. Algarni, Azzedine Zerguine, Niamat Hussain, and Rifaqat Hussain, "Optically transparent antennas: A review of the state-of-the-art, innovative solutions and future trends," Applied Sciences, Vol. 13, No. 1, 210, 2022.

19. Soni, G. K., D. Yadav, and A. Kumar, "Design consideration and recent developments in flexible, transparent and wearable antenna technology: A review," Transactions on Emerging Telecommunications Technologies, Vol. 35, No. 1, e4894, 2024.
doi:10.1002/ett.4894

20. Peter, Thomas, Tharek Abd Rahman, S. W. Cheung, Rajagopal Nilavalan, Hattan F. Abutarboush, and Antonio Vilches, "A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1844-1853, 2014.

21. Colombel, F., X. Castel, M. Himdi, G. Legeay, S. Vigneron, and E. Motta Cruz, "Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna," IET Science, Measurement & Technology, Vol. 3, No. 3, 229-234, 2009.

22. Turpin, Timothy W. and Reyhan Baktur, "Meshed patch antennas integrated on solar cells," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 693-696, 2009.

23. Clasen, G. and R. Langley, "Meshed patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1412-1416, 2004.

24. Hautcoeur, Julien, Larbi Talbi, Khelifa Hettak, and Mourad Nedil, "60 GHz optically transparent microstrip antenna made of meshed AuGL material," IET Microwaves, Antennas & Propagation, Vol. 8, No. 13, 1091-1096, 2014.

25. Hussain, Musa, Hijab Zahra, Syed Muzahir Abbas, and Yong Zhu, "Flexible dielectric materials: potential and applications in antennas and RF sensors," Advanced Electronic Materials, Vol. 10, No. 11, 2400240, 2024.

26. El Gharbi, Mariam, Raúl Fernández-García, Saida Ahyoud, and Ignacio Gil, "A review of flexible wearable antenna sensors: Design, fabrication methods, and applications," Materials, Vol. 13, No. 17, 3781, 2020.
doi:10.3390/ma13173781

27. Tong, Colin, Advanced Materials for Printed Flexible Electronics, Springer, 2022.
doi:10.1007/978-3-030-79804-8

28. Baabdullah, Fahd, Adnan Affandi, and Abdullah M. Dobaie, "Design microstrip patch antenna for WiMAX applications at 8.5 GHz," Simulation, Vol. 3, 39-2, 2016.

29. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

30. Desai, Arpan and Trushit Upadhyaya, "Transparent dual band antenna with μ-negative material loading for smart devices," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2805-2811, 2018.

31. Desai, Arpan, Trushit Upadhyaya, Merih Palandoken, Riki Patel, and Upesh Patel, "Dual band optically transparent antenna for wireless applications," 2017 IEEE Asia Pacific Microwave Conference (APMC), 960-963, Kuala Lumpur, Malaysia, 2017.

32. Azini, Alyaa Syaza, Muhammad Ramlee Kamarudin, Tharek Bin Abdul Rahman, Hashimu Uledi Iddi, Amuda Yusuf Abdulrahman, and Mohd Faizal Bin Jamlos, "Transparent antenna design for WiMAX application," Progress In Electromagnetics Research, Vol. 138, 133-141, 2013.

33. Desai, Arpan H. and Trushit Upadhyaya, "Dual-band transparent and non-transparent antennas for wireless application," International Journal of Electronics Letters, Vol. 8, No. 2, 170-179, 2020.

34. Mandal, Bappaditya and Susanta Kr. Parui, "A miniaturized wearable button antenna for Wi‐Fi and Wi‐Max application using transparent acrylic sheet as substrate," Microwave and Optical Technology Letters, Vol. 57, No. 1, 45-49, 2015.