Vol. 155
Latest Volume
All Volumes
PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-05-04
Design of a Compact Dual-Band Metamaterial Bandpass Filter Using Multi-Type Fractal Geometries
By
Progress In Electromagnetics Research C, Vol. 155, 111-119, 2025
Abstract
In this paper, a compact Dual-Band Bandpass Filter (BPF) has been proposed and designed based on two concepts. Firstly, transmission lines (TLs) feed the center resonators (CRs), which resonate at 11 GHz, while the metamaterial-based Center Resonators (CRs) resonate at 6 GHz for RF/Microwave applications. To miniaturize the planer structure, two different types of fractal geometry have been applied. First iteration modified-Minkowski fractal geometry has been applied on the CRs while the meander line with second order has been applied on the TLs. The proposed structure has been designed by using a Rogers RO4003 substrate with a thickness of 1.5 mm and a dielectric constant of 3.5. The simulation is implemented using CST microwave studio. To validate the proposed structure, the compact dual-band BPF is fabricated, and the measurements show high agreement with the simulation. Finally, the proposed structure achieves a 26 % reduction compared to the previous work.
Citation
Hayder S. Ahmed, and Aqiel Na'ma Almamori, "Design of a Compact Dual-Band Metamaterial Bandpass Filter Using Multi-Type Fractal Geometries," Progress In Electromagnetics Research C, Vol. 155, 111-119, 2025.
doi:10.2528/PIERC25031103
References

1. Federal Communications Commission, , FCC opens entire 6 GHz band to very low power device operations, [Online]. Available: https://docs.fcc.gov/public/attachments/DOC-408129A1.pdf. [Accessed: Apr. 2, 2025], Dec. 2024.

2. Berka, M., T. Islam, S. Das, A. Serhane, M. L. Kumar, and Z. Mahdjoub, "Design of miniaturized dual-band bandpass microstrip filter based on C-shaped metamaterial resonators for RF/microwave applications," J. Nano- Electron. Phys., Vol. 16, No. 4, 04012, 2024.

3. Khan, Zakir, Muhammad Hunain Memon, Saeed Ur Rahman, Muhammad Sajjad, Fujiang Lin, and Liguo Sun, "A single-fed multiband antenna for WLAN and 5G applications," Sensors, Vol. 20, No. 21, 6332, 2020.
doi:10.3390/s20216332

4. Faisal, Muhammad, Sohail Khalid, Mujeeb Ur Rehman, and Muhammad Abdul Rehman, "Synthesis and design of highly selective multi-mode dual-band bandstop filter," IEEE Access, Vol. 9, 43316-43323, 2021.

5. Abdel-Aziz, Mahmoud, Anwer S. Abd El-Hameed, Amr A. Awamry, and Ashraf S. Mohra, "Dual-band broadside-coupled based BPF with improved performance," AEU --- International Journal of Electronics and Communications, Vol. 138, 153895, 2021.

6. Riaz, Muhammad, Bal S. Virdee, Pancham Shukla, Karim Ouazzane, Muhittin Onadim, and Shahram Salekzamankhani, "Quasi‐elliptic dual‐band planar BPF with high‐selectivity and high inter‐band isolation for 5G communications systems," Microwave and Optical Technology Letters, Vol. 62, No. 4, 1509-1515, 2020.

7. Yang, Li, Mohamed Malki, and Roberto Gómez-García, "Multilayer dual-band bandpass filter using microstrip-to-slotline transitions and transversal signal-interference microstrip lines," 2024 IEEE Radio and Wireless Symposium (RWS), San Antonio, TX, USA, Jan. 2024.

8. Ali, Jawad K. and Hadi T. Ziboon, "Design of compact bandpass filters based on fractal defected ground structure (DGS) resonators," Indian Journal of Science and Technology, Vol. 9, No. 39, 1-9, 2016.
doi:10.17485/ijst/2016/v9i39/91350

9. Qin, Feng, Jiuhuai Lei, and Baoping Ren, "Compact microstrip antenna based on minkowski-like sided fractal," 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), 940-943, Shenyang, China, Jan. 2021.

10. Gulsu, Mustafa Suphi, Fulya Bagci, Sultan Can, Asim Egemen Yilmaz, and Baris Akaoglu, "Minkowski-like fractal resonator-based dielectric sensor for estimating the complex permittivity of binary mixtures of ethanol, methanol and water," Sensors and Actuators A: Physical, Vol. 330, 112841, 2021.

11. Das, Arkaprovo, Sayantan Dhar, and Bhaskar Gupta, "Lumped circuit model analysis of meander line antennas," 2011 11th Mediterranean Microwave Symposium (MMS), 21-24, Yasmine Hammamet, Tunisia, Sep. 2011.

12. Qing, X. M., Y. W. M. Chia, and J. Sun, "A novel miniaturized microstrip bandpass filter using a meander-line resonator," Microwave and Optical Technology Letters, Vol. 32, No. 4, 319-321, 2002.

13. Cristal, E. G., "Meander-line and hybrid meander-line transformers," IEEE Transactions on Microwave Theory and Techniques, Vol. 21, No. 2, 69-76, Feb. 1973.

14. Ahmed, Hayder S., Ali J. Salim, Mohammed R. Hussan, Hussain A. Hammas, Mahmood T. Yassen, Saad Mutashar, and Jawad K. Ali, "Design of compact dual-mode fractal based microstrip band reject filter," ARPN Journal of Engineering and Applied Sciences, Vol. 13, No. 7, 2395-2399, 2018.

15. Ahmed, Hayder S., Ali J. Salim, Jawad K. Ali, and Mushtaq A. Alqaisy, "A fractal-based dual-mode microstrip bandstop filter for wireless applications," 2016 16th Mediterranean Microwave Symposium (MMS), 1-4, Abu Dhabi, United Arab Emirates, Nov. 2016.

16. Tripathi, Shrivishal, Akhilesh Mohan, and Sandeep Yadav, "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1565-1568, 2015.

17. Siddiky, Air Mohammad, Mohammad Rashed Iqbal Faruque, Sabirin Abdullah, Mohammad Tariqul Islam, Mayeen Uddin Khandaker, and K. S. Al-Mugren, "Dual square split ring enclosed spiral shaped hybrid metamaterial resonator with size miniaturisation for microwave wireless applications," Scientific Reports, Vol. 12, No. 1, 8028, 2022.

18. Sharma, Nitika, Simranjit Kaur, and Balwinder S. Dhaliwal, "A new triple band hybrid fractal boundary antenna," 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 874-878, Bangalore, India, May 2016.

19. Pozar, David M., Microwave Engineering, Fourth Editions, University of Massachusetts at Amherst, John Wiley & Sons, Inc, 2012.

20. Thomann, W., B. Isele, and P. Russer, "Characterization of a 90 degrees curved microstrip transmission line in the time-domain and frequency-domain with 3D-TLM-method and measurements," IEEE Antennas and Propagation Society International Symposium 1992 Digest, 658-661, Chicago, IL, USA, Jun. 1992.

21. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.

22. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

23. Sharma, Swati and Rekha Mehra, "Printed monopole slot antenna inspired by metamaterial unit cell for wireless applications," Optical and Wireless Technologies, 413-424, 2022.

24. La Croix, M., Approaches to the enumerative theory of meanders, University of Waterloo, 2003.