Vol. 156
Latest Volume
All Volumes
PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-05-20
Leveraging Time-Domain Signals for Multi-Tag Classification in Chipless RFID Systems Using Classifier Chains
By
Progress In Electromagnetics Research C, Vol. 156, 1-12, 2025
Abstract
Chipless Radio Frequency Identification (CRFID) systems have emerged as a cost-effective and scalable solution for various identification and tracking applications. However, multi-tag classification remains a significant challenge due to overlapping signal characteristics and the absence of on-chip processing, which hinders accurate tag differentiation, increases interference, reduces classification accuracy, and necessitates advanced signal processing techniques for reliable identification. This study presents a novel machine learning-based approach utilizing a Classifier Chain-AdaBoost (CC-AdaBoost) model to improve multi-tag classification accuracy. Unlike conventional methods that rely on calibration or background subtraction, the proposed approach directly processes raw time-domain signals, enabling efficient and accurate classification of multiple tags simultaneously. The model is evaluated on simulated CRFID data, achieving an overall accuracy of 85%. Performance metrics such as accuracy, Hamming loss, Jaccard score, and F1-score are analysed to assess both overall classification performance and label-wise evaluation. Results indicate that CC-AdaBoost effectively differentiates tag classes, particularly excelling in high-confidence classifications while maintaining a balance between precision and recall. This study demonstrates the feasibility of CC-AdaBoost for real-world CRFID applications and suggests potential improvements for optimizing multi-tag recognition in complex environments.
Citation
Athul Thomas, Midhun Muraleedharan Sylaja, and James Kurian, "Leveraging Time-Domain Signals for Multi-Tag Classification in Chipless RFID Systems Using Classifier Chains," Progress In Electromagnetics Research C, Vol. 156, 1-12, 2025.
doi:10.2528/PIERC25031903
References

1. Zhong, Ray Y., Chen Xu, Chao Chen, and George Q. Huang, "Big data analytics for physical internet-based intelligent manufacturing shop floors," International Journal of Production Research, Vol. 55, No. 9, 2610-2621, 2017.

2. Nastasiu, Dragoș, Răzvan Scripcaru, Angela Digulescu, Cornel Ioana, Raymundo De Amorim Jr., Nicolas Barbot, Romain Siragusa, Etienne Perret, and Florin Popescu, "A new method of secure authentication based on electromagnetic signatures of chipless RFID tags and machine learning approaches," Sensors, Vol. 20, No. 21, 6385, 2020.
doi:10.3390/s20216385

3. Khan, Shahed I., Biplob R. Ray, and Nemai C. Karmakar, "RFID localization in construction with IoT and security integration," Automation in Construction, Vol. 159, 105249, 2024.

4. Shen, Xinyi, Guolong Shi, Liang Cheng, Lichuan Gu, Yuan Rao, and Yigang He, "Chipless RFID-inspired sensing for smart agriculture: A review," Sensors and Actuators A: Physical, Vol. 363, 114725, 2023.

5. Mulloni, Viviana and Massimo Donelli, "Chipless RFID sensors for the Internet of Things: Challenges and opportunities," Sensors, Vol. 20, No. 7, 2135, 2020.
doi:10.3390/s20072135

6. Rather, Nadeem, Roy B. V. B. Simorangkir, John L. Buckley, Brendan O'Flynn, and Salvatore Tedesco, "Deep-learning-assisted robust detection techniques for a chipless RFID sensor tag," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-10, 2023.

7. Villa-Gonzalez, Fatima, Jafait Junior Fodop Sokoudjou, Odón Pedrosa, Daniel Valderas, and Idoia Ochoa, "Analysis of machine learning algorithms for USRP-based smart chipless RFID readers," 2023 17th European Conference on Antennas and Propagation (EuCAP), 1-5, Florence, Italy, Mar. 2023.

8. Thomas, Athul, Midhun M. Sylaja, and James Kurian, "Refinement of chipless RFID tags across multiple positions for improved recognition reliability through machine learning techniques," Progress In Electromagnetics Research C, Vol. 150, 57-68, 2024.
doi:10.2528/PIERC24092505

9. Jeong, Soyeon, Jimmy Hester, Ryan Bahr, and Manos M. Tentzeris, "A machine learning approach-based chipless RFID system for robust detection in real-world implementations," 2021 IEEE MTT-S International Microwave Symposium (IMS), 661-664, Atlanta, GA, USA, Jun. 2021.

10. Sokoudjou, J. Junior Fodop, Fátima Villa-González, Pablo García-Cardarelli, Javier Díaz, Daniel Valderas, and Idoia Ochoa, "Chipless RFID tag implementation and machine-learning workflow for robust identification," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 12, 5147-5159, 2023.

11. Rather, Nadeem, Roy B. V. B. Simorangkir, John L. Buckley, Brendan O'Flynn, and Salvatore Tedesco, "Machine learning approaches for EM signature analysis in chipless RFID technology," 2024 18th European Conference on Antennas and Propagation (EuCAP), 1-5, Glasgow, United Kingdom, Mar. 2024.

12. Pranto, Tahmid Hasan, Mohammad Nabiluzzaman Neloy, Abdulla All Noman, Sheikh Wasif, Md. Abdul Wahab, and Rashedur M. Rahman, "Utilizing deep learning in chipless RFID tag detection: An investigation on high-precision mm-wave spatial tag estimation from 2D virtual imaging," Journal of Information and Telecommunication, Vol. 8, No. 3, 361-383, 2024.

13. Arjomandi, Larry M., Grishma Khadka, and Nemai C. Karmakar, "Mm-Wave chipless RFID decoding: Introducing image-based deep learning techniques," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 5, 3700-3709, 2021.

14. El-Hadidy, Mohamed, Ahmed El-Awamry, Abdelfattah Fawky, Maher Khaliel, and Thomas Kaiser, "A novel collision avoidance MAC protocol for multi-tag UWB chipless RFID systems based on notch position modulation," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, Apr. 2015.

15. El-Hadidy, Mohamed, Ahmed El-Awamry, Abdelfattah Fawky, Maher Khaliel, and Thomas Kaiser, "Real‐world testbed for multi‐tag UWB chipless RFID system based on a novel collision avoidance MAC protocol," Transactions on Emerging Telecommunications Technologies, Vol. 27, No. 12, 1707-1714, 2016.

16. Hester, Jimmy G. D. and Manos M. Tentzeris, "Inkjet-printed flexible mm-wave van-atta reflectarrays: A solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4763-4773, 2016.

17. Kheawprae, Feaveya, Akkarat Boonpoonga, and Danai Torrungrueng, "Complex natural resonance-based chipless RFID multi-tag detection using one-dimensional convolutional neural networks," IEEE Access, Vol. 11, 138078-138094, 2023.

18. Sajitha, V. R., C. M. Nijas, T. K. Roshna, R. Vivek, Kesavath Vasudevan, and P. Mohanan, "Polarization independent chipless RFID tag," Microwave and Optical Technology Letters, Vol. 57, No. 8, 1889-1894, 2015.

19. Rubayet-E-Azim "Collision, data recovery and localisation in chipless RFID," [Online]. Available: https://bridges.monash.edu/articles/thesis/Collision_Data_Recovery_and_Localisation_in_Chipless_RFID/4669612, 2017.

20. Nijas, C. M., "Design and development of compact chipless RFID tags with high data encoding capacity," [Online]. Available: https://dyuthi.cusat.ac.in/xmlui/bitstream/handle/purl/5225/Dyuthi%20T-2260.pdf?sequence=1, 2015.

21. Alsabry, Ayman, Malek Algabri, Amin Mohamed Ahsan, Mogeeb A. A. Mosleh, Aqeel Abdullah Ahmed, and Hamzah Ali Qasem, "Enhancing Prediction Models' Performance for Breast Cancer using SMOTE Technique," 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA), 1-8, Taiz, Yemen, Oct. 2023.

22. Das, Pranab, Yogita Thakran, S. R. Ngamwal Anal, Vipin Pal, and Anju Yadav, "BRMCF: Binary relevance and MLSMOTE based computational framework to predict drug functions from chemical and biological properties of drugs," IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 20, No. 3, 1761-1773, 2022.

23. Read, Jesse, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank, "Classifier chains for multi-label classification," Machine Learning, Vol. 85, 333-359, 2011.

24. Munisamy, S. D., M. Sumithra, S. Vivekanandan, and P. N. Kumar, "WITHDRAWN: Equivalence classifier chain Label power set tokenization of toxic comment multi label classification using machine learning," Materials Today: Proceedings, 2021.

25. Tsai, Jung-Kai and Chih-Hsing Hung, "Improving AdaBoost classifier to predict enterprise performance after COVID-19," Mathematics, Vol. 9, No. 18, 2215, 2021.

26. Khandokar, Iftakhar Ali, A. K. M. Muzahidul Islam, Salekul Islam, Swakkhar Shatabda, et al. "A gradient boosting classifier for purchase intention prediction of online shoppers," Heliyon, Vol. 9, No. 4, e15163, 2023.

27. Tariq, Aqil, Jianguo Yan, Alexandre S. Gagnon, Mobushir Riaz Khan, and Faisal Mumtaz, "Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest," Geo-Spatial Information Science, Vol. 26, No. 3, 302-320, 2023.

28. Kumari, V. Sheeja, E. Reddy, and S. Ramesh, "Comparing the performance of support vector machine and K neighbors classifier in predicting airline passenger satisfaction with high accuracy," AIP Conference Proceedings, Vol. 3168, No. 1, 020013, 2024.

29. Read, Jesse, Bernhard Pfahringer, Geoffrey Holmes, and Eibe Frank, "Classifier chains: A review and perspectives," Journal of Artificial Intelligence Research, Vol. 70, 683-718, 2021.
doi:10.1613/jair.1.12376