Vol. 156
Latest Volume
All Volumes
PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-06-02
Subwavelength Resonator for the Design of a Waveguide-Fed Metasurface Antenna
By
Progress In Electromagnetics Research C, Vol. 156, 113-120, 2025
Abstract
Antennas are one of the most important elements in modern communication systems. Recently, significant progress has been made in developing metasurface antennas as an alternative for beam steering, commonly used in radar and communication applications. Metasurface antennas consist of an array of metamaterial elements, uniformly distributed and with subwavelength dimensions, which can be excited by a progressive wave. This work focuses on the application of the Incremental Difference Method for estimating the magnetic polarizability of metamaterial arrays embedded in a waveguide-fed linear configuration. The method is validated through full-wave simulations and further assessed using a weighting function introduced in prior studies. The design is demonstrated using a WR340 waveguide-based metasurface antenna model.
Citation
Ivan Eduardo Diaz Pardo, Carlos Arturo Suarez Fajardo, Juan Domingo Baena Doello, and Hector Guarnizo, "Subwavelength Resonator for the Design of a Waveguide-Fed Metasurface Antenna," Progress In Electromagnetics Research C, Vol. 156, 113-120, 2025.
doi:10.2528/PIERC25041608
References

1. Huang, Chongwen, Alessio Zappone, George C. Alexandropoulos, Mérouane Debbah, and Chau Yuen, "Reconfigurable intelligent surfaces for energy efficiency in wireless communication," IEEE Transactions on Wireless Communications, Vol. 18, No. 8, 4157-4170, 2019.

2. Lin, Feng Han and Zhi Ning Chen, "Low-profile wideband metasurface antennas using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1706-1713, 2017.

3. Shamim, Shadmani, Abu S. M. Mohsin, Md. Mosaddequr Rahman, and Mohammed Belal Hossain Bhuian, "Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains," Heliyon, Vol. 10, No. 13, e33272, 2024.

4. Selvaraj, Monisha, Ramya Vijay, Rajesh Anbazhagan, and Amirtharajan Rengarajan, "Reconfigurable metasurface: Enabling tunable reflection in 6G wireless communications," Sensors, Vol. 23, No. 22, 9166, 2023.

5. Ashraf, Nouman, Taqwa Saeed, Hamidreza Taghvaee, Sergi Abadal, Vasos Vassiliou, Christos Liaskos, Andreas Pitsillides, and Marios Lestas, "Intelligent beam steering for wireless communication using programmable metasurfaces," IEEE Transactions on Intelligent Transportation Systems, Vol. 24, No. 5, 4848-4861, 2023.

6. Hu, Jun, Guo Qing Luo, and Zhang-Cheng Hao, "A wideband quad-polarization reconfigurable metasurface antenna," IEEE Access, Vol. 6, 6130-6137, 2017.

7. Jian, Mengnan, George C. Alexandropoulos, Ertugrul Basar, Chongwen Huang, Ruiqi Liu, Yuanwei Liu, and Chau Yuen, "Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques," Intelligent and Converged Networks, Vol. 3, No. 1, 1-32, 2022.

8. Wang, Xin, Jia Qi Han, Guan Xuan Li, De Xiao Xia, Ming Yang Chang, Xiang Jin Ma, Hao Xue, Peng Xu, Rui Jie Li, Kun Yi Zhang, et al. "High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface," Nature Communications, Vol. 14, No. 1, 6002, 2023.

9. Yang, Wanchen, Jinghao Li, Dongxu Chen, Yue Cao, Quan Xue, and Wenquan Che, "Advanced metasurface-based antennas: A review," IEEE Open Journal of Antennas and Propagation, Vol. 6, No. 1, 6-24, 2025.

10. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.

11. Hand, Thomas H., Jonah Gollub, Soji Sajuyigbe, David R. Smith, and Steven A. Cummer, "Characterization of complementary electric field coupled resonant surfaces," Applied Physics Letters, Vol. 93, No. 21, 212504, 2008.

12. Smith, David R., Okan Yurduseven, Laura Pulido Mancera, Patrick Bowen, and Nathan B. Kundtz, "Analysis of a waveguide-fed metasurface antenna," Physical Review Applied, Vol. 8, No. 5, 054048, Nov. 2017.

13. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

14. Engheta, Nader and Richard W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.

15. Tretyakov, Sergei, Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

16. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.

17. Caloz, Christophe and Tatsuo Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.

18. Sakyi, Papa, Jordan Dugan, Debidas Kundu, Tom J. Smy, and Shulabh Gupta, "Waveguide-floquet mapping using surface susceptibilities for passive and active metasurface unit cell characterization," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 9, 7110-7121, 2024.

19. Baena, Juan D., Ricardo Marqués, Francisco Medina, and Jesús Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, No. 1, 014402, Jan. 2004.

20. Baena, J. D., J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.

21. Boyarsky, Michael, Mohammadreza F. Imani, and David R. Smith, "Grating lobe suppression in metasurface antenna arrays with a waveguide feed layer," Optics Express, Vol. 28, No. 16, 23991-24004, Aug. 2020.

22. Lin, Mingtuan, Xianjun Huang, Bowen Deng, Jihong Zhang, Dongfang Guan, Dingwang Yu, and Yujian Qin, "A high-efficiency reconfigurable element for dynamic metasurface antenna," IEEE Access, Vol. 8, 87446-87455, 2020.

23. Sleasman, Timothy, Mohammadreza F. Imani, Wangren Xu, John Hunt, Tom Driscoll, Matthew S. Reynolds, and David R. Smith, "Waveguide-fed tunable metamaterial element for dynamic apertures," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 606-609, 2015.