Vol. 157
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-07-18
Compact Stepped-Impedance Low-Pass Filter Using Coplanar Open-Circuited Stubs
By
Progress In Electromagnetics Research C, Vol. 157, 239-246, 2025
Abstract
This paper proposes a compact stepped-impedance low-pass filter using coplanar open-circuited stubs. The coplanar open-circuited stubs, which are used to compensate for the capacitive effect of the stepped-impedance low-pass filter, are implemented underneath the stepped-impedance low-pass filter. Consequently, the size of the stepped-impedance low-pass filter can be significantly reduced from 11.1 mm × 23.4 mm to 5.6 mm × 9.4 mm without altering its performance, amounting to a reduction rate of 79.83%. In addition, The transmission coefficient is attenuated below -30 dB, which is less than -20 dB attenuation of the conventional stepped-impedance low-pass filter. To verify the simulation result, the conventional stepped-impedance low-pass filter and the compact stepped-impedance low-pass filter using coplanar open-circuited stubs are fabricated and measured where the measurement results agree well with the simulation ones.
Citation
Yi-Ruo Chen, Kuan-Wei Chen, and Chun-Long Wang, "Compact Stepped-Impedance Low-Pass Filter Using Coplanar Open-Circuited Stubs," Progress In Electromagnetics Research C, Vol. 157, 239-246, 2025.
doi:10.2528/PIERC25041701
References

1. Cohn, S. B., "Parallel-coupled transmission-line-resonator filters," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 223-231, Apr. 1958.

2. Makimoto, M. and S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 28, No. 12, 1413-1417, 1980.

3. Tang, Ching-Wen and Ming-Guang Chen, "Wide stopband parallel-coupled stacked SIRs bandpass filters with open-stub lines," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 12, 666-668, Dec. 2006.

4. Tang, Ching-Wen and Yen-Kuo Hsu, "Design of a wide stopband microstrip bandpass filter with asymmetric resonators," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 2, 91-93, Feb. 2008.

5. Tang, Ching-Wen and Yen-Kuo Hsu, "A microstrip bandpass filter with ultra-wide stopband," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 6, 1468-1472, Jun. 2008.

6. Mandal, M. K. and S. Sanyal, "A novel defected ground structure for planar circuits," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 93-95, 2006.

7. El-Halabi, Heba, Soubhi Abou-Chahine, Darine Kaddour, Emmanuel Pistono, and Philippe Ferrari, "DGS-SMS compact fifth order low pass filter," 2017 International Conference on High Performance Computing & Simulation (HPCS), 274-277, Genoa, Italy, Jul. 2017.

8. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.

9. Boudaa, S., M. Challal, R. Mehani, and D. Rabahallah, "Miniaturized ultra-wide stopband microstrip low pass filter design," 2015 4th International Conference on Electrical Engineering (ICEE), 1-3, Boumerdes, Algeria, Dec. 2015.

10. Luo, Sha, Lei Zhu, and Sheng Sun, "Stopband-expanded low-pass filters using microstrip coupled-line hairpin units," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, 506-508, 2008.

11. Hsieh, Lung-Hwa and Kai Chang, "Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 193-199, 2003.

12. Zhang, Fan, Shuai Liu, Peng Zhao, Ming Du, Xiaochuan Zhang, and Jun Xu, "Compact ultra-wide stopband lowpass filter using transformed stepped impedance hairpin resonator," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2227-2228, San Diego, CA, USA, Jul. 2017.

13. Dahlan, Samsul Haimi and Mazlina Esa, "Miniaturized low pass filter using modified unifolded single hairpin-line resonator for microwave communication systems," 2006 International RF and Microwave Conference, 16-20, Putra Jaya, Malaysia, Sep. 2006.

14. Pozar, D. M., Microwave Engineering, 3nd Ed., John Wiley & Sons, 2005.

15. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980.

16. Yan, Zih-Siang, "Reduction of common-mode and differential-mode noises for multilayers differential transmission line," Master’s degree thesis, National Taiwan University of Science and Technology, Taipei City, Taiwan, 2016.