Vol. 157
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-07-21
Highly Sensitive Microstrip Patch Sensor for Water Salinity Monitoring
By
Progress In Electromagnetics Research C, Vol. 157, 247-257, 2025
Abstract
This paper presents the design and implementation of a microstrip patch sensor based on a single complementary split ring resonator (SC−SRR), operating at a resonant frequency of 2.44 GHz for salinity detection. The sensor evaluates liquid under test (LUT) by monitoring variations in resonant frequency, reflection coefficient, and quality factor to extract the complex permittivity. The proposed design was simulated using High Frequency Structure Simulator (HFSS) and fabricated on an FR−4 substrate, incorporating a Teflon container to prevent direct contact with the sensing surface. Simulated and measured results exhibit a significant agreement, validating the sensor's performance. A frequency shift of 104.4 MHz was observed as the salinity concentration varied from 0 to 100 parts per thousand, attributed to dielectric perturbation effects. The proposed sensor demonstrates several advantages, including non-contact and non-destructive measurement, reusability, cost-effectiveness, high sensitivity, minimal fluid volume requirement, and reliable accuracy. These features highlight its potential for applications requiring precise and efficient.
Citation
Hussein Jasim, Amer Abbood Al-Behadili, and Sadiq Ahmed, "Highly Sensitive Microstrip Patch Sensor for Water Salinity Monitoring," Progress In Electromagnetics Research C, Vol. 157, 247-257, 2025.
doi:10.2528/PIERC25051504
References

1. Garg, Ramesh, Microstrip Antenna Design Handbook, Artech House, Boston, MA, USA, 2001.
doi:10.1049/el:19830247

2. Ahmed, Sadiq, Amer Abbood Albehadili, Zahraa H. Mohammed, Zaid A. Abdul Hassain, Mohammed Al-Saadi, and Madhukar Chandra, "Circularly polarized hexagonal microstrip antenna loaded with slot and complementary split ring resonator," Journal of Engineering and Sustainable Development, Vol. 28, No. 6, 745-753, 2024.
doi:10.31272/jeasd.28.6.7

3. Al-Gertany, Kareem and Qasim Hadi, "Reconfigurable compact wide-band quad-port antennas based on a varactor diode for sub-6 GHz 5G communications," Progress In Electromagnetics Research C, Vol. 145, 91-100, 2024.
doi:10.2528/PIERC24042507

4. Bennioui, Fatim-Zahra, Asma Khabba, Karima Ait Bouslam, Layla Wakrim, Saïda Ibnyaich, Abdelouhab Zeroual, Zahriladha Zakaria, and Ahmed J. A. Al-Gburi, "Genetic algorithm optimization of a wideband rectangular patch antenna with an asymmetric U-slot and partial ground for Ku-band satellite communication," Progress In Electromagnetics Research M, Vol. 133, 51-60, 2025.
doi:10.2528/PIERM25020802

5. Indharapu, Sai Sampreeth, Anthony N. Caruso, Travis D. Fields, and Kalyan C. Durbhakula, "Machine learning-based optimization of hexagon-shaped fractal antenna for ultra-wideband communications," Progress In Electromagnetics Research C, Vol. 143, 121-129, 2024.
doi:10.2528/PIERC24031308

6. Kareem, Qasim H., Laith W. Abdullah, Rana A. Shihab, Firas A. J. Al-Hasani, and Suhail N. Abdullah, "Optimize the performance of reconfigurable antenna based on laser treatment for sub-6 GHz applications," Progress In Electromagnetics Research Letters, Vol. 123, 95-103, 2025.
doi:10.2528/PIERL24100702

7. Kareem, Qasim H. and Malik J. Farhan, "Miniaturized quad-port UWB-MIMO antenna with band-notched characteristics at 5 GHz," Progress In Electromagnetics Research C, Vol. 118, 263-275, 2022.
doi:10.2528/PIERC22012002

8. Prottoy, Sadman Sakib, Md. Masud Rana, Md. Ariful Islam, Md. Arifuzzaman, and Najmul Alam, "Inverse S-shaped meander line antenna loaded with slotted parasitic patch and defected ground for internet of things (IoT) applications," Progress In Electromagnetics Research C, Vol. 154, 31-38, 2025.
doi:10.2528/PIERC24093003

9. Malik, Nabeel Ahmed, Paul Sant, Tahmina Ajmal, and Masood Ur-Rehman, "Implantable antennas for bio-medical applications," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 5, No. 1, 84-96, 2021.
doi:10.1109/jerm.2020.3026588

10. Wang, Wei, Xiu-Wei Xuan, Wan-Yi Zhao, and Hong-Kuai Nie, "An implantable antenna sensor for medical applications," IEEE Sensors Journal, Vol. 21, No. 13, 14035-14042, 2021.
doi:10.1109/jsen.2021.3068957

11. El Gharbi, Mariam, Marc Martinez-Estrada, Raúl Fernández-García, and Ignacio Gil, "Determination of salinity and sugar concentration by means of a circular-ring monopole textile antenna-based sensor," IEEE Sensors Journal, Vol. 21, No. 21, 23751-23760, 2021.
doi:10.1109/jsen.2021.3112777

12. Lee, Kibae, Arshad Hassan, Chong Hyun Lee, and Jinho Bae, "Microstrip patch sensor for salinity determination," Sensors, Vol. 17, No. 12, 2941, 2017.
doi:10.3390/s17122941

13. Logeswaran, Jeyagobi and Rajasekar Boopathi Rani, "UWB antenna as a sensor for the analysis of dissolved particles and water quality," Progress In Electromagnetics Research Letters, Vol. 106, 31-39, 2022.
doi:10.2528/PIERL22062901

14. Costanzo, Sandra, Antonio Cuccaro, Angela Dell’Aversano, Giovanni Buonanno, and Raffaele Solimene, "Microwave biomedical sensors with stable response: Basic idea and preliminary numerical assessments for blood glucose monitoring," IEEE Access, Vol. 11, 99058-99069, 2023.
doi:10.1109/access.2023.3313939

15. Kandwal, Abhishek, Jingzhen Li, Tobore Igbe, Yuhang Liu, Ranjan Das, Binod Kumar Kanaujia, and Zedong Nie, "Young's double slit method-based higher order mode surface plasmon microwave antenna sensor: Modeling, measurements, and application," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-11, 2022.
doi:10.1109/tim.2022.3214289

16. Raj, Saurabh, Shivesh Tripathi, Gaurav Upadhyay, Shiv Shanker Tripathi, and Vijay Shanker Tripathi, "An electromagnetic band gap-based complementary split ring resonator loaded patch antenna for glucose level measurement," IEEE Sensors Journal, Vol. 21, No. 20, 22679-22687, 2021.
doi:10.1109/jsen.2021.3107462

17. Sindhuja, S. and E. Kanniga, "Flexible antenna sensor in thumb spica splint for noninvasive monitoring of fluctuating blood glucose levels," IEEE Sensors Journal, Vol. 23, No. 1, 544-551, 2023.
doi:10.1109/jsen.2022.3223948

18. Sanders, Jeremiah W., Jun Yao, and Haiying Huang, "Microstrip patch antenna temperature sensor," IEEE Sensors Journal, Vol. 15, No. 9, 5312-5319, 2015.
doi:10.1109/jsen.2015.2437884

19. Zhang, Lili, Shujing Su, Fujia Xu, Ting Ren, and Jijun Xiong, "High sensitivity SIW-CSRR temperature sensor based on microwave scattering," IEEE Sensors Journal, Vol. 23, No. 13, 13900-13908, 2023.
doi:10.1109/jsen.2023.3276426

20. Javanbakht, Nima, George Xiao, and Rony E. Amaya, "A comprehensive review of portable microwave sensors for grains and mineral materials moisture content monitoring," IEEE Access, Vol. 9, 120176-120184, 2021.
doi:10.1109/access.2021.3108906

21. Zeng, Ziyan, Lei Huang, Ling Dang, Liman Sai, Quanhong Chang, and Wangzhou Shi, "RSSI evaluation model for quantitative power-oriented sensing using an omnidirectional antenna sensor," IEEE Sensors Letters, Vol. 2, No. 1, 1-4, 2018.
doi:10.1109/lsens.2017.2779497

22. Islam, Mohammad Tariqul, Farhad Bin Ashraf, Touhidul Alam, Norbahiah Misran, and Kamarulzaman Bin Mat, "A compact ultrawideband antenna based on hexagonal split-ring resonator for pH sensor application," Sensors, Vol. 18, No. 9, 2959, 2018.
doi:10.3390/s18092959

23. Halmshaw, R., "Basic properties of ionizing radiations," Industrial Radiology: Theory and Practice, 9-32, Springer, 1995.
doi:10.1007/978-94-011-0551-4_3

24. Zografopoulos, Dimitrios C., Antonio Ferraro, and Romeo Beccherelli, "Liquid-crystal high-frequency microwave technology: Materials and characterization," Advanced Materials Technologies, Vol. 4, No. 2, 1800447, 2019.
doi:10.1002/admt.201800447

25. Alozie, Emmanuel, Abdulwaheed Musa, Nasir Faruk, Agbotiname Lucky Imoize, Abubakar Abdulkarim, Aliyu D. Usman, Yusuf Olayinka Imam-Fulani, Kayode S. Adewole, Abdulkarim A. Oloyede, Olugbenga A. Sowande, Salisu Garba, Bashir Abdullahi Baba, Yinusa A. Adediran, and Lawan S. Taura, "A review of dust-induced electromagnetic waves scattering theories and models for 5G and beyond wireless communication systems," Scientific African, Vol. 21, e01816, 2023.
doi:10.1016/j.sciaf.2023.e01816

26. Yan, Dan, Yong Yang, Yingping Hong, Ting Liang, Zong Yao, Xiaoyong Chen, and Jijun Xiong, "Low-cost wireless temperature measurement: Design, manufacture, and testing of a PCB-based wireless passive temperature sensor," Sensors, Vol. 18, No. 2, 532, 2018.
doi:10.3390/s18020532

27. Kou, Hairong, Qiulin Tan, Lei Zhang, Helei Dong, Jijun Xiong, and Wendong Zhang, "Highly sensitive air-filled substrate integrated waveguide resonator integrated wireless passive slot-antenna for confined environmental detection," IEEE Sensors Journal, Vol. 19, No. 21, 10027-10033, 2019.
doi:10.1109/jsen.2019.2921148

28. Iqbal, Amjad, Amor Smida, Omar A. Saraereh, Qais H. Alsafasfeh, Nazih Khaddaj Mallat, and Byung Moo Lee, "Cylindrical dielectric resonator antenna-based sensors for liquid chemical detection," Sensors, Vol. 19, No. 5, 1200, 2019.
doi:10.3390/s19051200

29. Joseph, Charles Vinoth, Subramaniam Ramesh, Zuhairiah Z. Abidin, Suhail A. Qureshi, Sivathanu Chitra, Elumalai Saranya, Messiah Josephine, and Ganesan Sneha, "Planar edged UWB antenna for water quality measurement," Progress In Electromagnetics Research C, Vol. 130, 83-93, 2023.
doi:10.2528/pierc22122701

30. Eldamak, Angie R. and Elise C. Fear, "Conformal and disposable antenna-based sensor for non-invasive sweat monitoring," Sensors, Vol. 18, No. 12, 4088, 2018.
doi:10.3390/s18124088

31. Tang, Lingyi, Feng Xie, and Qiming Li, "A phase shift-based and quadrant-distinguishable passive microstrip antenna sensor for metal crack detection," IEEE Sensors Journal, Vol. 24, No. 6, 7796-7806, 2024.
doi:10.1109/jsen.2024.3357542

32. Withayachumnankul, Withawat, Kata Jaruwongrungsee, Adisorn Tuantranont, Christophe Fumeaux, and Derek Abbott, "Metamaterial-based microfluidic sensor for dielectric characterization," Sensors and Actuators A: Physical, Vol. 189, 233-237, 2013.
doi:10.1016/j.sna.2012.10.027

33. Ansari, M. A. H., Abhishek Kumar Jha, and M. J. Akhtar, "Permittivity measurement of common solvents using the CSRR based sensor," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1199-1200, Vancouver, BC, Canada, Jul. 2015.
doi:10.1109/aps.2015.7304988

34. Jasim, Hussein, Sadiq Ahmed, Iulia Andreea Mocanu, and Amer Abbood Al-Behadili, "Microstrip patch sensor for characterizing saline solution based on complimentary split-ring resonators (SC-SRRs)," Sensors, Vol. 25, No. 7, 2319, 2025.
doi:10.3390/s25072319

35. Javed, Ahmed, Ali Arif, Muhammad Zubair, Muhammad Qasim Mehmood, and Kashif Riaz, "A low-cost multiple complementary split-ring resonator-based microwave sensor for contactless dielectric characterization of liquids," IEEE Sensors Journal, Vol. 20, No. 19, 11326-11334, 2020.
doi:10.36227/techrxiv.12366737.v1

36. Abdulsattar, Rusul Khalid, Musab T. S. Al-Kaltakchi, Iulia Andreea Mocanu, Amer Abbood Al-Behadili, and Zaid A. Abdu Hassain, "Study on sensing urine concentrations in water using a microwave sensor based on hilbert structure," Sensors, Vol. 24, No. 11, 3528, 2024.
doi:10.3390/s24113528

37. Anwer, Ali Ismael, Zaid A. Abdul Hassain, and Taha A. Elwi, "A fractal minkowski design for microwave sensing applications," Journal of Engineering and Sustainable Development, Vol. 26, No. 5, 78-83, 2022.
doi:10.31272/jeasd.26.5.7

38. Balanis, Constantine A., Antenna Theory: Analysis and Design, 811-856, John Wiley & Sons, NJ, USA, 2016.
doi:10.1002/0471654507.erfme007

39. Reddy, A. Chennakesava, "Characterization of mechanical behavior of nylon/teflon nano particulate composites," International Journal of Advanced Research, Vol. 3, No. 5, 1241-1246, 2015.
doi:10.48048/tis.2022.3670

40. Agilent Technologies, Inc. "Agilent basics of measuring the dielectric properties of materials," 1-34, Application Note, 2006.
doi:10.1016/s0015-1882(07)70085-x

41. Nörtemann, K., J. Hilland, and U. Kaatze, "Dielectric properties of aqueous NaCl solutions at microwave frequencies," The Journal of Physical Chemistry A, Vol. 101, No. 37, 6864-6869, 1997.
doi:10.1021/jp971623a

42. Schmitt, Ron, Electromagnetics Explained: A Handbook for Wireless/RF, EMC, and High-Speed Electronics, Newnes, 2002.
doi:10.1016/b978-075067808-7/50003-1

43. Al-Behadili, Amer Abbood, Iulia Andreea Mocanu, Norocel Codreanu, and Mihaela Pantazica, "Modified split ring resonators sensor for accurate complex permittivity measurements of solid dielectrics," Sensors, Vol. 20, No. 23, 6855, 2020.
doi:10.3390/s20236855

44. Nel, Ben A. P., Anja K. Skrivervik, and Mats Gustafsson, "Q-factor bounds for microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 4, 3430-3440, 2023.
doi:10.1109/tap.2023.3243726

45. Yeo, Junho and Jong-Ig Lee, "Meander-line slot-loaded high-sensitivity microstrip patch sensor antenna for relative permittivity measurement," Sensors, Vol. 19, No. 21, 4660, 2019.
doi:10.3390/s19214660

46. Salim, Ahmed and Sungjoon Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors, Vol. 16, No. 11, 1802, 2016.
doi:10.3390/s16111802

47. Islam, Mohammad Tariqul, Md. Naimur Rahman, Mandeep Singh Jit Singh, and Md. Samsuzzaman, "Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based sensor," IEEE Access, Vol. 6, 4118-4126, 2018.
doi:10.1109/access.2017.2787689