Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-26
Study on Development of Rod-Electrode-Type Microwave Plasma Source at Atmospheric Pressure
By
Progress In Electromagnetics Research C, Vol. 160, 113-119, 2025
Abstract
This paper presents a newly developed rod-electrode-type microwave plasma source (MPS), which is mainly composed of a panel mount coaxial connector, a self-made metal adapter with an inlet and outlet of working gas, a quartz tube as a flow path of working gas, and a metal rod-electrode. Microwave energy can be then supplied directly to the working gas from the sharp tip of the metal rod-electrode through the panel mount coaxial connector. To verify the validity of the rod-electrode-type MPS, a reasonable microwave power supply system is built to transmit the microwave power from a magnetron to the panel mount coaxial connector. The experiments demonstrate that the rod-electrode-type MPS can convert by autoignition argon (Ar) into plasma at atmospheric pressure. Moreover, the Ar plasma can be changed to dry air (Air) plasma or nitrogen (N2) plasma by gradually replacing Ar with Air or N2. The experimental results show that the rod-electrode-type MPS is potentially an available tool for gas processing at atmospheric pressure.
Citation
Hidenori Sekiguchi, "Study on Development of Rod-Electrode-Type Microwave Plasma Source at Atmospheric Pressure," Progress In Electromagnetics Research C, Vol. 160, 113-119, 2025.
doi:10.2528/PIERC25053004
References

1. Fridman, Alexander, Plasma Chemistry, Cambridge University Press, 2008.
doi:10.1017/cbo9780511546075

2. Fridman, Alexander and Lawrence A. Kennedy, Plasma Physics and Engineering, CRC Press, 2004.
doi:10.1201/9781482293630

3. Bogaerts, Annemie and Gabriele Centi, "Plasma technology for CO2 conversion: A personal perspective on prospects and gaps," Frontiers in Energy Research, Vol. 8, 111, 2020.
doi:10.3389/fenrg.2020.00111

4. Qin, Yue, Guanghui Niu, Xu Wang, Daibing Luo, and Yixiang Duan, "Status of CO2 conversion using microwave plasma," Journal of CO2 Utilization, Vol. 28, 283-291, 2018.
doi:10.1016/j.jcou.2018.10.003

5. Yin, Yongxiang, Tao Yang, Zhikai Li, Edwin Devid, Daniel Auerbach, and Aart W. Kleyn, "CO 2 conversion by plasma: how to get efficient CO 2 conversion and high energy efficiency," Physical Chemistry Chemical Physics, Vol. 23, No. 13, 7974-7987, 2021.
doi:10.1039/D0CP05275B

6. Kiefer, Christian Karl, Rodrigo Antunes, Ante Hecimovic, Arne Meindl, and Ursel Fantz, "CO2 dissociation using a lab-scale microwave plasma torch: An experimental study in view of industrial application," Chemical Engineering Journal, Vol. 481, 148326, 2024.
doi:10.1016/j.cej.2023.148326

7. Choi, Dae Hyun, Se Min Chun, Suk Hwal Ma, and Yong Cheol Hong, "Production of hydrogen-rich syngas from methane reforming by steam microwave plasma," Journal of Industrial and Engineering Chemistry, Vol. 34, 286-291, 2016.
doi:10.1016/j.jiec.2015.11.019

8. Jasiński, Mariusz, Miroslaw Dors, Helena Nowakowska, Gerietta V. Nichipor, and Jerzy Mizeraczyk, "Production of hydrogen via conversion of hydrocarbons using a microwave plasma," Journal of Physics D: Applied Physics, Vol. 44, No. 19, 194002, 2011.
doi:10.1088/0022-3727/44/19/194002

9. Jasiński, M., D. Czylkowski, B. Hrycak, M. Dors, and J. Mizeraczyk, "Atmospheric pressure microwave plasma source for hydrogen production," International Journal of Hydrogen Energy, Vol. 38, No. 26, 11473-11483, 2013.
doi:10.1016/j.ijhydene.2013.05.105

10. Mizeraczyk, J., M. Jasinski, M. Dors, and Z. Zakrzewski, "Microwave plasma sources for gas processing," AIP Conference Proceedings, Vol. 993, No. 1, 287-294, 2008.
doi:10.1063/1.2909131

11. Mizeraczyk, J., M. Jasiński, H. Nowakowska, and M. Dors, "Studies of atmospheric-pressure microwave plasmas used for gas processing," Nukleonika, Vol. 57, No. 2, 241-247, 2012.

12. Deng, Pingping, Wei Xiao, Fengxia Wang, and Zhengping Zhang, "Design of a novel microwave plasma source based on ridged waveguide," Progress In Electromagnetics Research Letters, Vol. 101, 19-27, 2021.
doi:10.2528/PIERL21082501

13. Sekiguchi, Hidenori, "Pure ammonia direct decomposition using rod-electrode-type microwave plasma source," International Journal of Hydrogen Energy, Vol. 57, 1010-1016, 2024.
doi:10.1016/j.ijhydene.2023.12.296

14. Sekiguchi, Hidenori, "Experimental investigations of plasma-assisted ammonia combustion using rod-electrode-type microwave plasma source," International Journal of Hydrogen Energy, Vol. 65, 66-73, 2024.
doi:10.1016/j.ijhydene.2024.03.370

15. Kramida, A., Y. Ralchenko, J. Reader, and NIST ASD Team, "NIST Atomic Spectra Database (ver. 5.9)," National Institute of Standards and Technology, 2021.
doi:10.18434/T4W30F

16. Hoentsch, Maxi, René Bussiahn, Henrike Rebl, Claudia Bergemann, Martin Eggert, Marcus Frank, Thomas Von Woedtke, and Barbara Nebe, "Persistent effectivity of gas plasma-treated, long time-stored liquid on epithelial cell adhesion capacity and membrane morphology," PLoS One, Vol. 9, No. 8, e104559, 2014.
doi:10.1371/journal.pone.0104559

17. Liu, Jin-Ren, Gui-Min Xu, Xing-Min Shi, and Guan-Jun Zhang, "Low temperature plasma promoting fibroblast proliferation by activating the NF-κB pathway and increasing cyclinD1 expression," Scientific Reports, Vol. 7, No. 1, 11698, 2017.
doi:10.1038/s41598-017-12043-w

18. Bogaerts, Annemie, Renaat Gijbels, and Jaroslav Vlcek, "Modeling of glow discharge optical emission spectrometry: Calculation of the argon atomic optical emission spectrum," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 53, No. 11, 1517-1526, 1998.
doi:10.1016/s0584-8547(98)00139-6

19. Deng, X. L., A. Yu Nikiforov, P. Vanraes, and Ch. Leys, "Direct current plasma jet at atmospheric pressure operating in nitrogen and air," Journal of Applied Physics, Vol. 113, No. 2, 023305, 2013.
doi:10.1063/1.4774328

20. Khalili, Fatemeh, Babak Shokri, Mohammad-Reza Khani, Mohammad Hasani, Farzaneh Zandi, and Atousa Aliahmadi, "A study of the effect of gliding arc non-thermal plasma on almonds decontamination," AIP Advances, Vol. 8, No. 10, 105024, 2018.
doi:10.1063/1.5044476