Vol. 158
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-02
Compact Self-Decoupled MIMO Antenna Based on Current Cancellation for UAVs
By
Progress In Electromagnetics Research C, Vol. 158, 85-91, 2025
Abstract
In this paper, a compact multiple-input multiple-output (MIMO) antenna is proposed for unmanned aerial vehicles (UAVs). By simultaneously exciting common mode (CM) and differential mode (DM) from a T-shaped slot, wideband coverage is achieved. Four such slot antennas are used to form a four-antenna module operating in the N79 band (4.4-5.0 GHz). The size of the four-antenna module is merely 43 × 8 mm2, demonstrating excellent miniaturization and integration. The dominant coupling between adjacent elements occurs through currents of the same mode. When CM and DM currents coexist, partial cancellation of coupled currents at the feed point enables high isolation without ex-ternal decoupling structures. Two modules are symmetrically positioned along the longer edges of the frame, forming an 8-element MIMO antenna. The antenna achieves isolation greater than 11 dB and an envelope correlation coefficient (ECC) below 0.04. The measured total efficiency is better than 52%, with an average of 56%. Featuring compact footprint, zero-clearance constraint and high isola-tion, the proposed antenna is a promising candidate for 5G UAVs.
Citation
Yangyang Guan, Peng Zhang, Xulong Wang, and Jie Bai, "Compact Self-Decoupled MIMO Antenna Based on Current Cancellation for UAVs," Progress In Electromagnetics Research C, Vol. 158, 85-91, 2025.
doi:10.2528/PIERC25062104
References

1. Andrews, Jeffrey G., Stefano Buzzi, Wan Choi, Stephen V. Hanly, Angel Lozano, Anthony C. K. Soong, and Jianzhong Charlie Zhang, "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, 2014.
doi:10.1109/jsac.2014.2328098

2. Dama, Y. A. S., R. A. Abd-Alhameed, S. M. R. Jones, D. Zhou, N. J. McEwan, M. B. Child, and P. S. Excell, "An envelope correlation formula for (N, N) MIMO antenna arrays using input scattering parameters, and including power losses," International Journal of Antennas and Propagation, Vol. 2011, No. 1, 421691, 2011.
doi:10.1155/2011/421691

3. Hu, Yun, Wei Hong, Chao Yu, Yingrui Yu, Hui Zhang, Zhiqiang Yu, and Nianzu Zhang, "A digital multibeam array with wide scanning angle and enhanced beam gain for millimeter-wave massive MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 5827-5837, 2018.
doi:10.1109/tap.2018.2869200

4. Molisch, A. F. and M. Z. Win, "MIMO systems with antenna selection," IEEE Microwave Magazine, Vol. 5, No. 1, 46-56, 2004.
doi:10.1109/mmw.2004.1284943

5. Sun, Libin, Yue Li, Zhijun Zhang, and Zhenghe Feng, "Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metal-rimmed smartphones," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2494-2503, 2020.
doi:10.1109/tap.2019.2948707

6. Serghiou, Demos, Mohsen Khalily, Vikrant Singh, Ali Araghi, and Rahim Tafazolli, "Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G smartphones," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 9, 1546-1550, 2020.
doi:10.1109/lawp.2020.3008962

7. Megahed, Amany A., Mohamed Abdelazim, Ehab H. Abdelhay, and Heba Y. M. Soliman, "Sub-6 GHz highly isolated wideband MIMO antenna arrays," IEEE Access, Vol. 10, 19875-19889, 2022.
doi:10.1109/access.2022.3150278

8. Gopal, Kondapalli Venu and Yarravarapu Srinivasa Rao, "Mutual coupling reduction in UWB MIMO antenna using T-shaped stub," Progress In Electromagnetics Research Letters, Vol. 112, 77-85, 2023.
doi:10.2528/pierl23073103

9. Cui, Lun, Jingli Guo, Ying Liu, and Chow-Yen-Desmond Sim, "An 8-element dual-band MIMO antenna with decoupling stub for 5G smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2095-2099, 2019.
doi:10.1109/lawp.2019.2937851

10. Parchin, Naser Ojaroudi, Yasir Ismael Abdulraheem Al-Yasir, Ammar H. Ali, Issa Elfergani, James M. Noras, Jonathan Rodriguez, and Raed A. Abd-Alhameed, "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 7, 15612-15622, 2019.
doi:10.1109/access.2019.2893112

11. Dong, Jian, Shan Wang, and Jinjun Mo, "Design of a twelve-port MIMO antenna system for multi-mode 4G/5G smartphone applications based on characteristic mode analysis," IEEE Access, Vol. 8, 90751-90759, 2020.
doi:10.1109/access.2020.2994068

12. Li, Min, Yujie Zhang, Di Wu, Kwan Lawrence Yeung, Lijun Jiang, and Ross Murch, "Decoupling and matching network for dual-band MIMO antennas," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 1764-1775, 2022.
doi:10.1109/tap.2021.3118791

13. Cheor, Wai Loon, Azremi Abdullah Al-Hadi, Ping Jack Soh, Mohd Faizal Jamlos, Ahmed Mohamed Elshirkasi, Xiaoming Chen, and Prayoot Akkaraekthalin, "A decoupling network for resonant and non-resonant sub-1 GHz MIMO mobile terminal antennas with improved compactness and efficiency," IEEE Access, Vol. 9, 59475-59485, 2021.
doi:10.1109/access.2021.3073835

14. Xu, Yanhong, Nanyue Li, Can Cui, Xuhui Fan, Jianqiang Hou, and Anyi Wang, "A dual-band high-isolated MIMO antenna based on compensation network for 5G coal mine applications," Progress In Electromagnetics Research Letters, Vol. 123, 47-54, 2025.
doi:10.2528/pierl24082804

15. Wang, Wen, Yongle Wu, Weimin Wang, and Yuhao Yang, "Isolation enhancement in dual-band monopole antenna for 5G applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 6, 1867-1871, 2021.
doi:10.1109/tcsii.2020.3040164

16. Dong, Jian, Xiaping Yu, and Lianwen Deng, "A decoupled multiband dual-antenna system for WWAN/LTE smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1528-1532, 2017.
doi:10.1109/lawp.2017.2647807

17. Sun, Libin, Haigang Feng, Yue Li, and Zhijun Zhang, "Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6364-6369, 2018.
doi:10.1109/tap.2018.2864674

18. Hu, Wei, Zhan Chen, Long Qian, Lehu Wen, Qi Luo, Rui Xu, Wen Jiang, and Steven Gao, "Wideband back-cover antenna design using dual characteristic modes with high isolation for 5G MIMO smartphone," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5254-5265, 2022.
doi:10.1109/tap.2022.3145456

19. Ren, Aidi, Ying Liu, and Chow-Yen-Desmond Sim, "A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6430-6438, 2019.
doi:10.1109/tap.2019.2920306

20. Zhao, Xing, Swee Ping Yeo, and Ling Chuen Ong, "Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4485-4495, 2018.
doi:10.1109/tap.2018.2851381

21. Hu, Wei, Qiaosong Li, Hao Wu, Zhan Chen, Lehu Wen, Wen Jiang, and Steven Gao, "Dual-band antenna pair with high isolation using multiple orthogonal modes for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 2, 1949-1954, 2023.
doi:10.1109/tap.2022.3233458

22. Pang, Bo, Xia Ai, Wei Hu, Wen Jiang, and Bao Lu, "Closely arranged self‐decoupled MIMO antenna group using orthogonal mode and pattern diversity for 5G mobile terminals," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 11, e23372, 2022.
doi:10.1002/mmce.23372

23. Chang, Le, Yafang Yu, Kunpeng Wei, and Hanyang Wang, "Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5212-5220, 2019.
doi:10.1109/tap.2019.2913738

24. Chang, Le, Yafang Yu, Kunpeng Wei, and Hanyang Wang, "Orthogonally polarized dual antenna pair with high isolation and balanced high performance for 5G MIMO smartphone," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3487-3495, 2020.
doi:10.1109/tap.2020.2963918

25. Xu, Hang, Steven Gao, Hai Zhou, Hanyang Wang, and Yujian Cheng, "A highly-integrated MIMO antenna unit," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, Krakow, Poland, 2019.
doi:10.1109/tap.2019.2922763

26. Sun, Libin, Yue Li, Zhijun Zhang, and Hanyang Wang, "Self-decoupled MIMO antenna pair with shared radiator for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3423-3432, 2020.
doi:10.1109/tap.2019.2963664