Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-20
Active Sampling Strategies for Non-Embedded EMC Uncertainty Simulation
By
Progress In Electromagnetics Research C, Vol. 160, 29-38, 2025
Abstract
Non-embedded uncertainty analysis methods are widely used in the field of electromagnetic compatibility (EMC). Their essence is to construct a surrogate model to simulate the actual electromagnetic simulation process and obtain the desired uncertainty simulation results through exhaustive sampling. However, when performing complex electromagnetic compatibility simulations, non-embedded uncertainty analysis methods face an inherent problem. This problem arises from the excessive number of deterministic simulations, which leads to computational inefficiency. In this paper, an active sampling strategy based on Bayesian optimization is proposed. By selecting the locations of deterministic simulation sampling points in a more reasonable manner, the overall number of sampling points required for the uncertainty simulation can be minimized, thereby improving the computational efficiency. Finally, the effectiveness of the sampling strategy proposed in this paper was verified using a typical parallel cable crosstalk example and a lightning electromagnetic pulse electromagnetic interference simulation example.
Citation
Jinjun Bai, Jiasheng Wang, Xiangrui Ji, Yujia Song, and Haichuan Cao, "Active Sampling Strategies for Non-Embedded EMC Uncertainty Simulation," Progress In Electromagnetics Research C, Vol. 160, 29-38, 2025.
doi:10.2528/PIERC25062405
References

1. Lalléchère, Sébastien, Carlo F. M. Carobbi, and Luk R. Arnaut, "Review of uncertainty quantification of measurement and computational modeling in EMC Part II: Computational uncertainty," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 6, 1699-1706, 2019.
doi:10.1109/TEMC.2019.2904999

2. Bai, Jinjun, Shenghang Huo, Alistair Duffy, and Bing Hu, "Improvement of nonembedded EMC uncertainty analysis methods based on data fusion technique," IEEE Transactions on Electromagnetic Compatibility, Vol. 66, No. 6, 1999-2009, Dec. 2024.
doi:10.1109/temc.2024.3447784

3. Zhu, Zhizhen, Jing Yang, Yuewu Shi, Xin Nie, Wei Wu, and Wei Chen, "Monte Carlo simulation based uncertainty analysis of coupling electric fields in HEMP field tests," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 6, 1951-1961, 2021.
doi:10.1109/temc.2021.3098097

4. Zhang, Yin, Cheng Liao, Rui Huan, Yuping Shang, and Haijing Zhou, "Analysis of nonuniform transmission lines with a perturbation technique in time domain," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 2, 542-548, 2020.
doi:10.1109/temc.2019.2906251

5. Bauer, Susanne, Werner Renhart, and Oszkár Bíró, "FEM-based computation of circuit parameters for testing fast transients for EMC problems," IEEE Transactions on Magnetics, Vol. 53, No. 6, 1-4, 2017.
doi:10.1109/TMAG.2017.2651171

6. Bai, Jinjun, Gang Zhang, Alistair P. Duffy, and Lixin Wang, "Dimension-reduced sparse grid strategy for a stochastic collocation method in EMC software," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 218-224, 2018.
doi:10.1109/temc.2017.2699691

7. Manfredi, Paolo, Dries Vande Ginste, Daniël De Zutter, and Flavio G. Canavero, "On the passivity of polynomial chaos-based augmented models for stochastic circuits," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 11, 2998-3007, 2013.
doi:10.1109/tcsi.2013.2256256

8. Fei, Zhouxiang, Yi Huang, Jiafeng Zhou, and Qian Xu, "Uncertainty quantification of crosstalk using stochastic reduced order models," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 228-239, 2017.
doi:10.1109/temc.2016.2604361

9. Ren, Ziyan, Jiangang Ma, Yanli Qi, Dianhai Zhang, and Chang-Seop Koh, "Managing uncertainties of permanent magnet synchronous machine by adaptive Kriging assisted weight index Monte Carlo simulation method," IEEE Transactions on Energy Conversion, Vol. 35, No. 4, 2162-2169, 2020.
doi:10.1109/tec.2020.3009249

10. Hu, Bing, Yingxin Wang, Shenghang Huo, and Jinjun Bai, "Application of improved SROM based on RBF neural network model in EMC worst case estimation," Progress In Electromagnetics Research Letters, Vol. 119, 51-57, 2024.
doi:10.2528/pierl24012503

11. Memon, Zain A., Riccardo Trinchero, Paolo Manfredi, Flavio Canavero, Igor S. Stievano, and Yanzhao Xie, "Machine learning for the uncertainty quantification of power networks," IEEE Letters on Electromagnetic Compatibility Practice and Applications, Vol. 2, No. 4, 138-141, 2020.
doi:10.1109/lemcpa.2020.3042122

12. Xiu, Dongbin and George Em Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM Journal on Scientific Computing, Vol. 24, No. 2, 619-644, 2002.
doi:10.1137/S1064827501387826

13. Ren, Ziyan, Jiangang Ma, Yanli Qi, Dianhai Zhang, and Chang-Seop Koh, "Managing uncertainties of permanent magnet synchronous machine by adaptive Kriging assisted weight index Monte Carlo simulation method," IEEE Transactions on Energy Conversion, Vol. 35, No. 4, 2162-2169, 2020.
doi:10.1109/tec.2020.3009249

14. Yu, Z., Z. Qing, and M. Yan, "Application of chaos immune optimization RBF network in dynamic deformation prediction," Geodesy and Geodynamics, Vol. 32, No. 5, 53-57, 2012.

15. Xia, Liangqiong, Penghao Hu, Kunlong Ma, and Long Yang, "Research on measurement modeling of spherical joint rotation angle based on RBF-ELM network," IEEE Sensors Journal, Vol. 21, No. 20, 23118-23124, 2021.
doi:10.1109/JSEN.2021.3106303

16. Memon, Zain A., Riccardo Trinchero, Paolo Manfredi, Flavio Canavero, Igor S. Stievano, and Yanzhao Xie, "Machine learning for the uncertainty quantification of power networks," IEEE Letters on Electromagnetic Compatibility Practice and Applications, Vol. 2, No. 4, 138-141, 2020.
doi:10.1109/lemcpa.2020.3042122

17. Bai, Jinjun, Bing Hu, and Zhengyu Xue, "EMC uncertainty simulation method based on improved Kriging model," IEEE Letters on Electromagnetic Compatibility Practice and Applications, Vol. 5, No. 4, 127-130, 2023.
doi:10.1109/lemcpa.2023.3299244

18. Huo, Shenghang, Yujia Song, Qing Liu, and Jinjun Bai, "Improving kriging surrogate model for EMC uncertainty analysis using LSSVR," Applied Computational Electromagnetics Society Journal (ACES), Vol. 39, No. 7, 614-622, Jul. 2024.
doi:10.13052/2024.aces.j.390705

19. Tang, Shengnan, Yong Zhu, and Shouqi Yuan, "Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization," ISA Transactions, Vol. 129, 555-563, 2022.
doi:10.1016/j.isatra.2022.01.013

20. Sun, Deliang, Jiahui Xu, Haijia Wen, and Danzhou Wang, "Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest," Engineering Geology, Vol. 281, 105972, 2021.
doi:10.1016/j.enggeo.2020.105972

21. Bai, Jinjun, Yixuan Wan, Ming Li, Gang Zhang, and Xin He, "Reduction of random variables in EMC uncertainty simulation model," Applied Computational Electromagnetics Society Journal (ACES), Vol. 37, No. 9, 941-947, 2022.
doi:10.13052/2022.aces.j.370903

22. Bai, Jinjun, Lixin Wang, Di Wang, Alistair P. Duffy, and Gang Zhang, "Validity evaluation of the uncertain EMC simulation results," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 3, 797-804, 2017.
doi:10.1109/temc.2016.2621182

23. Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas, "Taking the human out of the loop: A review of Bayesian optimization," Proceedings of the IEEE, Vol. 104, No. 1, 148-175, 2016.
doi:10.1109/jproc.2015.2494218

24. Bai, Jinjun, Bing Hu, and Alistair Duffy, "Uncertainty analysis for EMC simulation based on bayesian optimization," IEEE Transactions on Electromagnetic Compatibility, Vol. 67, No. 2, 587-597, 2025.
doi:10.1109/temc.2024.3457787

25. COMSOL Multiphysics, "Lightning-induced voltage of a wire in an airplane," Available: https://cn.comsol.com/model/lightning-induced-voltage-of-a-wire-in-an-airplane-110121.

26. Fuchs, F., E. U. Landers, R. Schmid, and J. Wiesinger, "Lightning current and magnetic field parameters caused by lightning strikes to tall structures relating to interference of electronic systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 4, 444-451, 1998.
doi:10.1109/15.736205