Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-26
Design and Analysis of a Novel Dual-PM Flux-Reversal Machine with Halbach Array
By
Progress In Electromagnetics Research C, Vol. 159, 70-78, 2025
Abstract
Flux-reversing machines (FRMs) have the advantages of high torque density and wide speed range. However, their disadvantage is the low utilization rate of permanent magnets (PMs). To enhance PM utilization, a novel dual-PM FRM (DPFRM) with Halbach arrays is proposed in this paper. Halbach arrays are applied to both the stator interlayer and half of the rotor teeth, forming a consequent-pole structure together with iron cores. This layout significantly reduces the number of rotor magnets used. With the use of Halbach arrays, this design effectively reduces magnetic flux leakage. It also achieves higher torque density under low current conditions, demonstrating enhanced electromagnetic performance. To achieve better overall performance, both the conventional FRM and the proposed DPFRM are globally optimized. Their no-load and load performances are evaluated through finite element analysis (FEA). The analysis verifies that the DPFRM achieves higher back electromotive force (Back-EMF) and torque density, and also exhibits lower torque ripple. Therefore, the proposed design significantly improves PM utilization, effectively mitigating the primary limitation of conventional FRMs.
Citation
Yeming Zhu, Longxiang Han, Mingji Yin, Yuhui Huang, and Libing Jing, "Design and Analysis of a Novel Dual-PM Flux-Reversal Machine with Halbach Array," Progress In Electromagnetics Research C, Vol. 159, 70-78, 2025.
doi:10.2528/PIERC25070701
References

1. Zhu, Zi-Qiang and David Howe, "Electrical machines and drives for electric, hybrid, and fuel cell vehicles," Proceedings of the IEEE, Vol. 95, No. 4, 746-765, Apr. 2007.
doi:10.1109/jproc.2006.892482

2. Shi, Zhou, Xiaodong Sun, Zebin Yang, Yingfeng Cai, Gang Lei, Jianguo Zhu, and Christopher H. T. Lee, "Design optimization of a spoke-type axial-flux PM machine for in-wheel drive operation," IEEE Transactions on Transportation Electrification, Vol. 10, No. 2, 3770-3781, Jun. 2024.
doi:10.1109/tte.2023.3310738

3. Sun, Xiaodong, Naixi Xu, and Ming Yao, "Sequential subspace optimization design of a dual three-phase permanent magnet synchronous hub motor based on NSGA III," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 622-630, Mar. 2023.
doi:10.1109/tte.2022.3190536

4. Shi, Zhou, Xiaodong Sun, Gang Lei, Xiang Tian, Youguang Guo, and Jianguo Zhu, "Multiobjective optimization of a five-phase bearingless permanent magnet motor considering winding area," IEEE/ASME Transactions on Mechatronics, Vol. 27, No. 5, 2657-2666, Oct. 2022.
doi:10.1109/tmech.2021.3121802

5. Zou, Tianjie, Dawei Li, Ronghai Qu, and Dong Jiang, "Performance comparison of surface and spoke-type flux-modulation machines with different pole ratios," IEEE Transactions on Magnetics, Vol. 53, No. 6, 1-5, Jun. 2017.
doi:10.1109/tmag.2017.2662081

6. Wu, Zhongze, Zi-Qiang Zhu, and Hanlin Zhan, "Comparative analysis of partitioned stator flux reversal PM machine and magnetically geared machine operating in stator-PM and rotor-PM modes," IEEE Transactions on Energy Conversion, Vol. 32, No. 3, 903-917, Sep. 2017.
doi:10.1109/tec.2017.2693028

7. Chau, K. T., C. C. Chan, and Chunhua Liu, "Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, 2246-2257, Jun. 2008.
doi:10.1109/tie.2008.918403

8. Cheng, Ming, Wei Hua, Jianzhong Zhang, and Wenxiang Zhao, "Overview of stator-permanent magnet brushless machines," IEEE Transactions on Industrial Electronics, Vol. 58, No. 11, 5087-5101, Nov. 2011.
doi:10.1109/tie.2011.2123853

9. Cheng, He, Jizhen Cui, Cheng Peng, Jinlong Chu, Jianping Zhou, and Zongbin Ye, "Electromagnetic characteristics analysis and torque ripple reduction for doubly salient PM machine," IEEE Transactions on Energy Conversion, Vol. 38, No. 3, 1659-1668, Sep. 2023.
doi:10.1109/tec.2023.3239916

10. Zhu, Xiaofeng and Wentao Huang, "Investigation of five-phase flux-switching permanent magnet machines for EV and HEV applications," IEEE Transactions on Industry Applications, Vol. 60, No. 1, 1071-1082, Jan.-Feb. 2024.
doi:10.1109/tia.2023.3274623

11. Zheng, Yuting, Wei Xiang, Huayue Xu, Ping Tan, and Youtong Fang, "Analysis of a flux reversal machine with consequent-pole evenly distributed PM," IEEE Transactions on Industry Applications, Vol. 60, No. 1, 4-11, Jan.-Feb. 2024.
doi:10.1109/tia.2023.3269738

12. Gao, Yuting, Ronghai Qu, Dawei Li, and Jian Li, "Torque performance analysis of three-phase flux reversal machines," IEEE Transactions on Industry Applications, Vol. 53, No. 3, 2110-2119, May-Jun. 2017.
doi:10.1109/tia.2017.2677356

13. Yang, Kuang, Fei Zhao, Yi Wang, and Zhicheng Bao, "Consequent-pole flux reversal permanent magnet machine with halbach array magnets in rotor slot," IEEE Transactions on Magnetics, Vol. 57, No. 2, 1-5, Feb. 2021.
doi:10.1109/tmag.2020.3007861

14. Gao, Yuting, Ronghai Qu, Dawei Li, Jian Li, and Guopeng Zhou, "Consequent-pole flux-reversal permanent-magnet machine for electric vehicle propulsion," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 4, 1-5, Jun. 2016.
doi:10.1109/tasc.2016.2514345

15. Wei, Fangrui, Z. Q. Zhu, Huan Qu, Luocheng Yan, and Ji Qi, "New dual-PM spoke-type flux-reversal machines for direct-drive applications," IEEE Transactions on Industry Applications, Vol. 58, No. 5, 6190-6202, Sep.-Oct. 2022.
doi:10.1109/tia.2022.3190248

16. Gao, Yuting, Takashi Kosaka, Yang Liu, Martin Doppelbauer, and Ronghai Qu, "Comparative analysis of double flux modulation permanent magnet machines with different stator PM arrangements," IEEE Transactions on Industry Applications, Vol. 58, No. 2, 1941-1951, Mar.-Apr. 2022.
doi:10.1109/tia.2021.3138838

17. Aslani, Behzad, Seyed Ehsan Abdollahi, and S. A. Gholamian, "A novel dual-PM flux reversal machine with halbach array magnets in stator slots," 2023 3rd International Conference on Electrical Machines and Drives (ICEMD), 1-5, Tehran, Islamic Republic of Iran, 2023.
doi:10.1109/ICEMD60816.2023.10429230

18. Wei, Fangrui, Z. Q. Zhu, Yinzhao Zheng, and Hai Xu, "Comparative study of stator-PM and dual-PM consequent-pole hybrid excited flux-reversal machines," 2022 25th International Conference on Electrical Machines and Systems (ICEMS), 1-5, Chiang Mai, Thailand, 2022.
doi:10.1109/ICEMS56177.2022.9983353

19. Sun, Pengcheng, Shaofeng Jia, Dongxu Yang, Deliang Liang, and Zhanqiang Luo, "Design and comparative analysis of dual winding dual magnet machines with different PM arrangements," IEEE Transactions on Industry Applications, Vol. 61, No. 1, 151-160, Jan.-Feb. 2025.
doi:10.1109/tia.2024.3478193

20. Wang, Qingsong, Shuangxia Niu, and Lin Yang, "Design optimization and comparative study of novel dual-PM excited machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9924-9933, Dec. 2017.
doi:10.1109/tie.2017.2716869