Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-30
Comparison Study on the Protection Characteristics of Non-Gap Line Arresters Against Lightning and Switching Transients in High-Voltage Power System
By
Progress In Electromagnetics Research C, Vol. 160, 161-168, 2025
Abstract
In ultra-high-voltage alternating current (HVAC) transmission systems, switching and lightning transients pose major challenges to insulation coordination. Non-gap line arresters (NGLAs) offer a promising distributed protection solution, capable of suppressing both types of transients when installed along the transmission corridor. However, the differences in protection performance under varying configurations and installation strategies remain insufficiently understood. This paper establishes a 750 kV, 400 km transmission line model using an ATP-EMTP and MATLAB co-simulation framework to investigate the transient suppression performance of NGLAs with different rated voltages and installation positions. Simulation results show that for switching transients, effective suppression of the 2% statistical overvoltage level below 1.8 p.u. can be achieved when NGLA is installed around an optimal position. Meanwhile, energy absorption of all arresters remains well below the 6 MJ thermal design threshold, confirming both suppression effectiveness and thermal stability. On the other hand, lightning transients exhibit strong spatial locality. NGLA can effectively reduce the lightning transient peak at positions close to lighting strike point. Even slight spatial offsets (1-5 km) drastically reduce its effectiveness in limiting peak voltage. Under typical lightning currents of 30-40 kA, the maximum energy absorbed by arresters remains below 2.2 MJ, demonstrating robust energy endurance. This study highlights the fundamental differences in propagation and protection mechanisms between switching and lightning transients, and underscores the need for differentiated arrester deployment strategies. The findings provide theoretical insight and engineering guidance for optimized NGLA configuration and insulation coordination in HVAC systems.
Citation
Tongwei Guo, Tao Liang, Wei Shen, Sen Wang, Jie Guo, and Yan-Zhao Xie, "Comparison Study on the Protection Characteristics of Non-Gap Line Arresters Against Lightning and Switching Transients in High-Voltage Power System," Progress In Electromagnetics Research C, Vol. 160, 161-168, 2025.
doi:10.2528/PIERC25070901
References

1. Ma, Zhao, Xiaoxin Zhou, Yuwei Shang, and Limei Zhou, "Form and development trend of future distribution system," Proceedings of the CSEE, Vol. 35, No. 6, 1289-1298, 2015.

2. Arafat, Easir and Mona Ghassemi, "Switching overvoltage analysis in conventional and unconventional transmission lines," 2024 IEEE Kansas Power and Energy Conference (KPEC), 1-4, Manhattan, KS, USA, 2024.
doi:10.1109/kpec61529.2024.10676135

3. Yang, Shanshan and Gregory A. Franklin, "Switching transient overvoltage study simulation comparison using PSCAD/EMTDC and EMTP-RV," 2013 Proceedings of IEEE Southeastcon, 1-5, Jacksonville, FL, USA, 2013.
doi:10.1109/secon.2013.6567369

4. Abbasi, Ehsan, Heresh Seyedi, and Kai Strunz, "Simulation and analysis of the effect of single-pole auto-reclosing on HV transmission lines switching overvoltages," 2009 IEEE Power & Energy Society General Meeting, 1-9, Calgary, AB, Canada, 2009.
doi:10.1109/pes.2009.5275435

5. Li, Yang, Jinliang He, Jun Yuan, Chen Li, Jun Hu, and Rong Zeng, "Failure risk of UHV AC transmission line considering the statistical characteristics of switching overvoltage waveshape," IEEE Transactions on Power Delivery, Vol. 28, No. 3, 1731-1739, 2013.
doi:10.1109/tpwrd.2013.2252238

6. Chen, X., J. Guo, T. Lu, W. Shi, T. Lei, and C. Li, "Recommended volt ampere characteristics of MOA in the lightning invasion over-voltage calculation of UHV AC substation and its influence on simulation results," 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 1-4, Beijing, China, 2020.

7. Guo, Tongwei, Tao Liang, Wei Shen, et al., "Analysis on a resonance faults incident of 35 kV capacitor voltage transformer," 2025 International Conference on Electrical Automation and Artificial Intelligence (ICEAAI), 980-984, Guangzhou, China, 2025.
doi:10.1109/iceaai64185.2025.10957641

8. He, Jinliang, Jun Yuan, Yang Li, Chen Li, Jun Hu, and Rong Zeng, "Equivalent waveform parameters of switching overvoltages in UHV systems," IEEE Transactions on Power Delivery, Vol. 28, No. 3, 1740-1749, 2013.
doi:10.1109/tpwrd.2013.2252239

9. Zhao, Z., M. Li, T. Zhang, and Y. Tian, "Overvoltage and insulation coordination study for UHVDC transmission system that is hierarchically connected to 500 kV and 1000 kV AC grids on line side," 18th International Conference on AC and DC Power Transmission (ACDC 2022), 1514-1519, Online Conference, China, 2022.
doi:10.1049/icp.2022.1438

10. He, Jinliang, Yao Zhou, Zhengqiang Li, and Jun Yuan, "Feasibility of using one-column-varistor arresters in 1000-kV UHV substations," IEEE Transactions on Power Delivery, Vol. 31, No. 4, 1533-1541, 2016.
doi:10.1109/tpwrd.2015.2476500

11. Yamagata, Y., K. Tanaka, S. Nishiwaki, N. Takahashi, T. Kokumai, I. Miwa, T. Komukai, and K. Imai, "Suppression of VFT in 1100 kV GIS by adopting resistor-fitted disconnector," IEEE Transactions on Power Delivery, Vol. 11, No. 2, 872-880, 1996.
doi:10.1109/61.489346

12. Zhang, Yuan, Xinyu Zhang, Shan Li, and Yadi Xie, "Feasibility study on canceling closing resistance of 750 kV short line circuit breaker," International Conference on Information Control, Electrical Engineering and Rail Transit, 61-67, Springer, 2023.
doi:10.1007/978-981-97-8891-0_7

13. Legate, A. C., J. H. Brunke, J. J. Ray, and E. J. Yasuda, "Elimination of closing resistors on EHV circuit breakers," IEEE Transactions on Power Delivery, Vol. 3, No. 1, 223-231, 1988.
doi:10.1109/61.4249

14. Li, Zhenqiang, Peihong Zhou, Ying Lou, and Lei Wang, "Feasibility research on canceling breaker closing resistor of UHV transmission lines," High Voltage Engineering, Vol. 41, No. 11, 3721-3727, 2015.

15. Yang, Pengcheng, Shuiming Chen, and Jinliang He, "Effect of different arresters on switching overvoltages in UHV transmission lines," Tsinghua Science & Technology, Vol. 15, No. 3, 325-328, 2010.
doi:10.1016/s1007-0214(10)70069-9

16. Shu, Hongchun, Weijie Lou, Yutao Tang, Ziran Yang, and Yiming Han, "Research study on the multi-strike energy model and control strategy optimization of controllable arrester," Electric Power Systems Research, Vol. 241, 111349, 2025.
doi:10.1016/j.epsr.2024.111349

17. Wang, Bao-Shan, Shao-Wu Wang, Yi Xiong, Xiao-Ning Wang, Lin Tang, and Zhong-Qiu Zuo, "The development of the UHV a.c. arresters," European Transactions on Electrical Power, Vol. 22, No. 1, 94-107, 2012.
doi:10.1002/etep.604

18. Giraudet, Florent, "Various benefts for line surge arrester application and advantages of externally gapped line arresters," 2019 International Conference on High Voltage Engineering and Technology (ICHVET), 1-6, Hyderabad, India, 2019.
doi:10.1109/ichvet.2019.8724171

19. Ribeiro, J. R. and M. E. McCallum, "An application of metal oxide surge arresters in the elimination of need for closing resistors in EHV breakers," IEEE Transactions on Power Delivery, Vol. 4, No. 1, 282-291, 1989.
doi:10.1109/61.19215

20. Kou, Xiaokuo, "Study on dismantling the closing resistor of 500 kV breaker in Henan power grid," 2010 International Conference on E-Product E-Service and E-Entertainment, 1-4, Henan, China, 2010.
doi:10.1109/iceee.2010.5661088

21. Ma, Feiyue, Xiaohui Chen, Chunying He, Xiaoguang Zhu, Junbo Deng, and Hui Ni, "Research on the closing inrush current and overvoltage of 750 kV AC filter breakers," 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 1-4, Beijing, China, 2020.
doi:10.1109/ICHVE49031.2020.9279801

22. Lou, Ying, Zhipeng Zha, Zhenqiang Li, and Huiwen He, "Study on cancelling closing resistor of circuit breaker in long distance outlet of 500 kV power plant," 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), 1456-1461, Hangzhou, China, 2022.
doi:10.1109/ACPEE53904.2022.9783861

23. Bunov, P., L. Klingbeil, M. Schubert, B. Gossler, D. Biswas, and James Hunt, "Transmission line arresters application for control of switching overvoltages on 500-kV transmission line," 2014 IEEE PES T&D Conference and Exposition, 1-5, Chicago, IL, USA, 2024.
doi:10.1109/tdc.2014.6863442

24. He, Jinliang, Chen Li, Jun Hu, and Rong Zeng, "Deep suppression of switching overvoltages in AC UHV systems using low residual arresters," IEEE Transactions on Power Delivery, Vol. 26, No. 4, 2718-2725, 2011.
doi:10.1109/TPWRD.2011.2164623

25. Meng, Pengfei, Yao Zhou, Jinbo Wu, Jun Hu, and Jinliang He, "Novel ZnO varistors for dramatically improving protective effect of surge arresters," 2018 34th International Conference on Lightning Protection (ICLP), 1-6, Rzeszow, Poland, 2018.
doi:10.1109/iclp.2018.8503330

26. Ding, Tongshu, Jiachen Gao, Zhikang Shuai, Jianwen Nie, and Tingxiu Jiang, "Analysis of lightning overvoltage on the transmission line near a substation under multiple lightning strikes," 2025 IEEE Industry Applications Society Annual Meeting (IAS), 1-4, Taipei, Taiwan, 2025.
doi:10.1109/ias62731.2025.11061760

27. Cui, Tao, Zhengxi Wang, Tao Liang, Xiaohui Wu, Zhengzheng Fu, Tongwei Guo, and Jie Guo, "Impact of lightning strike waveform and position on transient overvoltage in a 500 kV HVAC system," 2025 International Conference on Electrical Automation and Artificial Intelligence (ICEAAI), 313-317, Guangzhou, China, 2025.
doi:10.1109/iceaai64185.2025.10957472